Skip to main content

Advertisement

Log in

Antioxidant and antimalarial properties of butein and homobutein based on their ability to chelate iron (II and III) cations: a DFT study in vacuo and in solution

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A theoretical study on the antioxidant and antimalarial properties of butein and homobutein has been performed by considering their Fe2+ and Fe3+ chelation ability. In order to elucidate the origin of the antioxidant and antimalarial properties of these compounds, the study attempts to investigate the nature of the complex structures, ligand···Fen+ stabilities and electronic properties of the Fe cations before and after complexation. The investigation considered the neutral and the deprotonated species of butein and homobutein interacting with the Fe cations as well as the deprotonated species of butein and homobutein interacting with micro-solvated Fe2+ or Fe3+ cation. The study has been performed using B3LYP/6-31+G(d,p) method. The LANL2DZ pseudo-potential was selected to describe the Fe cations. Final energies were obtained using the B3LYP/6-311+G(2d,p)//B3LYP/6-31+G(d,p) method. The binding energies depend on the media (it is higher in vacuo than in water solution), the nature of the cation (it is higher for Fe3+ than for Fe2+), the nature of the ligand and the Fen+ coordination site on the ligand (it is highest for the bidentate Fe coordination to O2′ and O9 atoms and lowest for the Fe coordination on the π system of the aromatic ring). The charge on Fen+ decreases on coordination to the ligand. AIM analysis suggests that the strong cation···ligand interactions are more likely covalent than ionic in vacuo and entirely ionic in solution. The ability of the ligands to reduce the Fe cation coupled with the strong iron-binding properties has significant implication on their antioxidant and antimalarial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chan SC, Chang YS, Wang JP, Chen SC, Kuo SC (1998) Three new flavonoids and antiallergic, anti-inflammatory constituents from the heartwood of Dalbergia odorifera. Planta Med 64:153–158

    Article  CAS  Google Scholar 

  2. Perkin AGFRS, Hummel JJ (1904) CXLVII. The colouring principle of the flowers of the Butea frondosa. J Chem Soc Trans 85:1459–1472

    Article  CAS  Google Scholar 

  3. Shimokoriyama M, Geissman TA (1960) Anthochlor pigments. XIV. The pigments of viguiera multiflora (Nutt.) and baeria chrysostoma (F. and M.). J Org Chem 25:1956–1959

    Article  CAS  Google Scholar 

  4. Geissman TA (1942) Anthochlor pigments. III. The pigments of cosmos sulphureus. J Chem Soc 64:1704–1707

    Article  CAS  Google Scholar 

  5. Geissman TA, Harborne JB, Seikel MK (1956) Anthochlor pigments. XI. The constituents of coreopsis maritima. Reinvestigation of coreopsis gigantea. J Am Chem Soc 78:825–829

    Article  CAS  Google Scholar 

  6. Cheng Z-J, Kuo S-C, Chan S-C, Ko F-N, Teng C-M (1998) Antioxidant properties of butein isolated from Dalbergia odorifera. Biochim Biophys Acta 1392:291–299

    Article  CAS  Google Scholar 

  7. Cho S-G, Woo S-M, Ko S-G (2014) Butein suppresses breast cancer growth by reducing a production of intracellular reactive oxygen species. J Exp Clin Cancer Res 33:51

    Article  CAS  Google Scholar 

  8. Wang Y, Chan FL, Chen S, Leung LK (2005) The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase. Life Sci 77:39–51

    Article  CAS  Google Scholar 

  9. Huang Y-T, Lin C-I, Chien P-H, Tang T-T, Lin J, Chao J-I (2014) The depletion of securin enhances butein-induced apoptosis and tumor inhibition in human colorectal cancer. Chem Biol Interact 220:41–50

    Article  CAS  Google Scholar 

  10. Sung J, Lee J (2015) Anti-inflammatory activity of butein and luteolin through suppression of NFκB activation and induction of heme oxygenase-1. J Med Food 18:557–564

    Article  CAS  Google Scholar 

  11. Wang Z, Lee Y, Eun JS, Bae EJ (2014) Inhibition of adipocyte inflammation and macrophage chemotaxis by butein. Eur J Pharmacol 738:40–48

    Article  CAS  Google Scholar 

  12. Semwal RB, Semwal DK, Combrinck S, Viljoen A (2015) Inhibition of adipocyte inflammation and macrophage chemotaxis by butein. Phytochem Lett 11:188–201

    Article  CAS  Google Scholar 

  13. Tomar V, Bhattacharjee G, Kamaluddin Rajakumar S, Srivastava K, Puri SK (2010) Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur J Med Chem 45:745–751

    Article  CAS  Google Scholar 

  14. Yenesew A, Duli M, Derese S, Midiwo JO, Heydenreich M, Peter MG, Akala H, Wangui J, Liyala P, Waters NC (2004) Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry 65:3029–3032

    Article  CAS  Google Scholar 

  15. Chen W, Song J, Guo P, Wen Z (2006) Butein, a more effective antioxidant than α-tocopherol. J Mol Struct (theochem) 763:161–164

    Article  CAS  Google Scholar 

  16. Guo P, Chen W, Song J, Cao W, Tian C (2008) A DFT study of the interaction between butein anion and metal cations (M = Mg2+, Cr2+, Fe2+, and Cu2+): taking an insight into its chelating property. J Mol Struct (theochem) 849:33–36

    Article  CAS  Google Scholar 

  17. Farhoosh R (2005) Antioxidant activity and mechanism of action of butein in linoleic acid. Food Chem 93:633–639

    Article  CAS  Google Scholar 

  18. Sogawa S, Nihro Y, Ueda H, Miki T, Matsumoto H, Satoh T (1994) Protective effects of hydroxychalcones on free radical-induced cell damage. Biol Pharm Bull 17:251–256

    Article  CAS  Google Scholar 

  19. Lee JC, Lim KT, Jang YS (2002) Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim Biophys Acta 1570:181–191

    Article  CAS  Google Scholar 

  20. Kozlowski D, Trouillas P, Calliste C, Marsal P, Lazzaroni R, Duroux J-L (2007) Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J Phys Chem A 111:1138–1145

    Article  CAS  Google Scholar 

  21. Sivakumar PM, Prabhakar PK, Doble M (2011) Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Med Chem Res 20:482–492

    Article  CAS  Google Scholar 

  22. Wang T, Gu J, Wu PF, Wang F, Xiong Z, Yang YJ, Wu WN, Dong LD, Chen JG (2009) Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation. Free Radic Biol Med 47:229–240

    Article  CAS  Google Scholar 

  23. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233

    Article  CAS  Google Scholar 

  24. Mwangi HM, Westhuizen JVD, Marnewick J, Mabusela WT, Kabanda MM, Ebenso EE (2013) Isolation, identification and radical scavenging activity of phlorotannin derivatives from brown algae, Ecklonia maxima: an experimental and theoretical study. Free Radic Antioxid 3:S1–S10

    Article  CAS  Google Scholar 

  25. Kabanda MM, Mammino L, Murulana LC, Mwangi HM, Mabusela WT (2015) Antioxidant radical scavenging properties of phenolic pent-4-en-1-yne derivatives isolated from hypoxis rooperi. A DFT study in vacuo and in solution. Int J Food Prop 18:149–164

    Article  CAS  Google Scholar 

  26. Kranl K, Schlesier K, Bitsch R, Hermann H, Rohe M, Böhm V (2005) Comparing antioxidative food additives and secondary plant products—use of different assays. Food Chem 93:171–175

    Article  CAS  Google Scholar 

  27. Jennings BH, Akoh CC (2009) Effectiveness of natural versus synthetic antioxidants in a rice bran oil-based structured lipid. Food Chem 114:1456–1461

    Article  CAS  Google Scholar 

  28. Aissa I, Sghair RM, Bouaziz M, Laouini D, Sayadi S, Gargouri Y (2012) Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities. Lipids in Health Disease 11:1

    Article  CAS  Google Scholar 

  29. Mabeza GF, Loyevsky M, Gordeuk VR, Weiss G (1999) Iron chelation therapy for malaria: a review. Pharmacol Ther 81:53–75

    Article  CAS  Google Scholar 

  30. Leopoldini M, Russo N, Chiodo S, Toscano M (2006) Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem 54:6343–6351

    Article  CAS  Google Scholar 

  31. Alcaro S, Chiodo SG, Leopoldini M, Ortuso F (2013) Antioxidant efficiency of oxovitisin, a new class of red wine pyranoanthocyanins, revealed through quantum mechanical investigations. J Chem Inf Model 53:66–75

    Article  CAS  Google Scholar 

  32. Kabanda MM (2012) Antioxidant activity of Rooperol investigated through Cu (I and II) chelation ability and the hydrogen transfer mechanism: a DFT study. Chem Res Toxicol 25:2153–2166

    Article  CAS  Google Scholar 

  33. Andjelković M, Van Camp J, De Meulenaer B, Depaemelaere G, Socaciu C, Verloo M (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98:23–31

    Article  CAS  Google Scholar 

  34. Kabanda MM, Tran VT, Seema KM, Serobatse KRN, Tsiepe TJ, Tran QT, Ebenso EE (2015) Conformational, electronic and antioxidant properties of lucidone, linderone and methyllinderone: DFT, QTAIM and NBO studies. Mol Phys 113:683–697

    Article  CAS  Google Scholar 

  35. Tsiepe TJ, Kabanda MM, Serobatse KRN (2015) Antioxidant properties of kanakugiol revealed through the hydrogen atom transfer, electron transfer and M2 + (M2+ = Cu(II) or Co(II) Ion) coordination ability mechanisms A DFT study in vacuo and in solution. Food Biophys 10:342–359

    Article  Google Scholar 

  36. Yang Y-C, Lii C-K, Lin A-H, Yeh Y-W, Yao H-T, Li C-C, Liu K-L, Chen H-W (2011) Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic Biol Med 51:2073–2081

    Article  CAS  Google Scholar 

  37. Lee D-S, Li B, Kim K-S, Jeong G-S, Kim E-C, Kim Y-C (2013) Butein protects human dental pulp cells from hydrogen peroxide-induced oxidative toxicity via Nrf2 pathway-dependent heme oxygenase-1 expressions. Toxicol In Vitro 27:874–881

    Article  CAS  Google Scholar 

  38. Nair VDP, Dairam A, Agbonon A, Arnason JT, Foster BC, Kanfer I (2007) Investigation of the antioxidant activity of African potato (Hypoxis hemerocallidea). J Agric Food Chem 55:1707–1711

    Article  CAS  Google Scholar 

  39. Benzie FFI, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  40. Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114

    Article  CAS  Google Scholar 

  41. Liu TZ, Chin N, Kiser MD, Bigler WN (1982) Specific spectrophotometry of ascorbic acid in serum or plasma by use of ascorbate oxidase. Clin Chem 28:2225–2228

    CAS  Google Scholar 

  42. Loyevsky M, John C, Dickens B, Hu V, Miller JH, Gordeuk VR (1999) Chelation of iron within the erythrocytic Plasmodium falciparum parasite by iron chelators. Mol Biochem Parasit 101:43–59

    Article  CAS  Google Scholar 

  43. Lytton SD, Mester B, Libman J, Shanzer A, Loav Cabantchik Z (1994) Mode of action of iron (III) chelators as antimalarials: II. Evidence for differential effects on parasite iron-dependent nucleic acid synthesis. Blood 84:910–915

    CAS  Google Scholar 

  44. Perron NR, Wang HC, DeGuire SN, Jenkins M, Lawson M, Brumaghim JL (2010) Kinetics of iron oxidation upon polyphenol binding. Dalton Trans 39:9982–9987

    Article  CAS  Google Scholar 

  45. Guo M, Perez C, Wei Y, Rapoza E, Su G, Bou-Abdallah F, Chasteen ND (2007) Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans 43:4951–4961

    Article  CAS  Google Scholar 

  46. Mammino L, Kabanda MM (2015) Considering the medium when studying biologically active molecules: motivation, options and challenges. In: Zaheer-ul-Haq AA, Madura JD (eds) Frontiers in computational chemistry, vol 1. Bentham Science, Sharjah, pp 197–256

    Google Scholar 

  47. Mammino L, Kabanda MM (2009) Computational study of Nodifloridin-A and Nodifloridin-B, with highlight of the peculiarities of acylated phloroglucinol derivatives. WSEAS Trans Biol Biomed 6:58–63

    Google Scholar 

  48. Mammino L, Kabanda MM (2010) A Computational study of the carboxylic acid of phloroglucinol in vacuo and in water solution. Int J Quantum Chem 110:595–623

    Article  CAS  Google Scholar 

  49. Mammino L, Kabanda MM (2012) Computational study of the patterns of weaker intramolecular hydrogen bonds stabilizing acylphloroglucinols. Int J Quantum Chem 112:2650–2658

    Article  CAS  Google Scholar 

  50. Kabanda MM, Mammino L (2012) A Comparative study of the dimers of selected hydroxybenzenes. Int J Quantum Chem 112:519–531

    Article  CAS  Google Scholar 

  51. Kabanda MM, Mammino L (2012) The conformational preferences of acylphloroglucinols—a promising class of biologically active compounds. Int J Quantum Chem 112:3691–3702

    Article  CAS  Google Scholar 

  52. Kabanda MM, Ebenso EE (2013) Structures, stabilization energies, and binding energies of quinoxaline···(H2O)n, quinoxaline dimer, and quinoxaline···Cu complexes: a theoretical study. J Phys Chem A 117:1583–1595

    Article  CAS  Google Scholar 

  53. Kabanda MM, Ebenso EE (2013) DFT study of the protonation and deprotonation enthalpies of benzoxazole, 1,2-benzisoxazole and 2,1-benzisoxazole and implications for the structures and energies of their adducts with explicit water molecules. J Theor Comput Chem 12:1350070

    Article  CAS  Google Scholar 

  54. Mammino L, Kabanda MM (2013) The role of additional O–H···O intramolecular hydrogen bonds for acylphloroglucinols’ conformational preferences in vacuo and in solution. Mol Simul 39:1–13

    Article  CAS  Google Scholar 

  55. Kabanda MM, Ebenso EE (2014) MP2, DFT and DFT-D study of the dimers of diazanaphthalenes: a comparative study of their structures, stabilisation and binding energies. Mol Simul 40:1131–1146

    Article  CAS  Google Scholar 

  56. Alagona G, Ghio C (2009) Antioxidant properties of pterocarpans through their copper(II) coordination ability. A DFT study in vacuo and in aqueous Solution. J Phys Chem A 113:15206–15216

    Article  CAS  Google Scholar 

  57. Alagona G, Ghio C (2009) Plicatin B conformational landscape and affinity to copper (I and II) metal cations. A DFT study. Phys Chem Chem Phys 11:776–790

    Article  CAS  Google Scholar 

  58. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  59. Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  60. Foster JP, Reed AE, Carpenter JE, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  61. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  62. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  63. Keith TA, AIMAll (Version 14.06.21), TK Gristmill Software, Overland Park KS, USA, 2014

  64. Korth H-G, de Heer MI, Mulder P (2002) A DFT study on intramolecular hydrogen bonding in 2-substituted phenols: conformations, enthalpies, and correlation with solute parameters. J Phys Chem A 106:8779–8789

    Article  CAS  Google Scholar 

  65. Mammino L, Kabanda MM (2011) Interplay of intramolecular hydrogen bonds, OH orientations, and symmetry factors in the stabilization of polyhydroxybenzenes. Int J Quantum Chem 111:3701–3716

    CAS  Google Scholar 

  66. Mammino L, Kabanda MM (2009) A study of the intramolecular hydrogen bond in acylphloroglucinols. J Mol Struct (Theochem) 901:210–219

    Article  CAS  Google Scholar 

  67. Bodini ME, Copia G, Tapia R, Leighton F, Herrera L (1999) Iron complexes of quercetin in aprotic medium. Redox chemistry and interaction with superoxide anion radical. Polyhedron 18:2233–2239

    Article  CAS  Google Scholar 

  68. Hanzlik RP (1976) Inorganic aspects of biological and organic chemistry. Academic Press, New York

    Google Scholar 

  69. Platts JA, Howard ST, Bracke BRF (1996) Directionality of hydrogen bonds to sulfur and oxygen. J Am Chem Soc 118:2726–2733

    Article  CAS  Google Scholar 

  70. Perez-Lustres JL, Bräuer M, Mosquera M, Clark T (2001) Ground-state tautomerism and rotational isomerization in 4,5-dimethyl-2-(2-hydroxyphenyl)imidazole in the gas phase and in polar solvents: a theoretical study of the aromaticity, intramolecular hydrogen-bond strength and differential solute–solvent interactions. Phys Chem Chem Phys 3:3569–3579

    Article  CAS  Google Scholar 

  71. Gogoi U, Guha AK, Phukan AK (2011) Nature of intramolecular metal–metal interactions in supported group 4–group 9 and group 6–group 9 heterobimetallic complexes: a combined density functional theory and topological study. Organometallics 30:5991–6002

    Article  CAS  Google Scholar 

  72. Bader RFW, Matta CF (2001) Bonding to titanium. Inorg Chem 40:5603–5611

    Article  CAS  Google Scholar 

  73. Gervasio G, Bianchi R, Marabello D (2004) About the topological classification of the metal–metal bond. Chem Phys Lett 387:481–484

    Article  CAS  Google Scholar 

  74. Kabanda MM, Tran VT, Tran TQ, Ebenso EE (2014) DFT study of the protonation and deprotonation enthalpies of benzoxazole, 1,2-benzisoxazole and 2,1-benzisoxazole and implications for the structures and energies of their adducts with explicit water molecules. Comp Theor Chem 1046:30–41

    Article  CAS  Google Scholar 

  75. Feng L, Bai F-Q, Wu Y, Zhang H-X (2011) Dihydrogen bond in C2H4−n Cl n ···NaH (n = 0, 1, 2, 3) complexes: ab initio, AIM and NBO studies. Mol Phys 109:645–653

    Article  CAS  Google Scholar 

  76. Kabanda MM (2015) A theoretical study of the antioxidant properties of phenolic acid amides investigated through the radical-scavenging and metal chelation mechanisms. Eur Food Res Technol. doi:10.1007/s00217-015-2484-0

    Google Scholar 

  77. Varadwaj PR, Marques HM (2010) The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density. Phys Chem Chem Phys 12:2126–2136

    Article  CAS  Google Scholar 

  78. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H···F–Y systems. J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  79. Binder H, Zschörnig O (2002) The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem Phys Lipids 115:39–61

    Article  CAS  Google Scholar 

  80. Chevreau H, Martinsky C, Sevin A, Minot C, Silvi B (2003) The nature of the chemical bonding in the D 3h and C 2v isomers of Fe3(CO)12. New J Chem 27:1049

    Article  CAS  Google Scholar 

  81. Qi W, Reiter RJ, Tan DX, Manchester LC, Kim SJ, Garcia JJ (1999) Inhibitory effects of melatonin on ferric nitrilotriacetate-induced lipid peroxidation and oxidative DNA damage in the rat kidney. Toxicology 139:81–91

    Article  CAS  Google Scholar 

  82. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18:1033–1077

    Article  CAS  Google Scholar 

  83. Molina MdC, Anchordoquy TJ (2007) Metal contaminants promote degradation of lipid/DNA complexes during lyophilization. Biochim Biophys Acta 1768:669–677

    Article  CAS  Google Scholar 

  84. Hider RC, Mohd-Nor AR, Silver J, Morrison IEG, Rees LVC (1981) Model compounds for microbial iron-transport compounds. Part 1. Solution chemistry and Mössbauer study of iron(II) and iron(III) complexes from phenolic and catecholic systems. J Chem Soc Dalton Trans 2:609–622

    Article  Google Scholar 

Download references

Acknowledgments

Kemoabetswe R.N. Serobatse is grateful to Sasol Inzalo Foundation (South Africa) for financial assistance which has enabled her to take part in this work. The financial assistance of the South African National Research Foundation (NRF) towards this research, in support of K.R.N. Serobatse, is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF or Sasol Inzalo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mwadham M. Kabanda.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serobatse, K.R.N., Kabanda, M.M. Antioxidant and antimalarial properties of butein and homobutein based on their ability to chelate iron (II and III) cations: a DFT study in vacuo and in solution. Eur Food Res Technol 242, 71–90 (2016). https://doi.org/10.1007/s00217-015-2520-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2520-0

Keywords

Navigation