Skip to main content
Log in

A novel trait-specific real-time PCR method enables quantification of genetically modified (GM) maize content in ground grain samples containing stacked GM maize

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Stacked genetically modified (GM) maize is increasingly produced; thereby, current event-specific quantitative real-time polymerase chain reaction (qPCR) methods have led to the overestimation of GM organism (GMO) content compared with the actual weight/weight percentage of GM organism in maize samples. We developed a feasible qPCR method in which the GMO content is calculated based on the quantification of two herbicide-tolerant trait genes, 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacterium sp. strain CP4 (cp4epsps) and phosphinothricin N-acetyl-transferase from Streptomyces viridochromogenes (pat) to quantify the GMO content in ground grain samples containing stacked GM maize. The GMO contents of two genes were quantified using a plasmid calibrant and summed for quantification of total GMO content. The trait-specific method revealed lower biases for examination of test samples containing stacked GM maize compared with the event-specific method. Our results clearly show that the trait-specific method is not only simple and cost-effective, but also useful in quantifying the GMO content in ground grain samples containing stacked GM maize, which are expected to be major events in the near future. The developed method would be the only feasible way to conduct the quantification of GMO content in the ground maize samples containing stacked GM maize for the verification of the labeling regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Davison J, Bertheau Y (2008) The theory and practice of European traceability regulations for GM food and feed. Cereal Foods World 53:186–196

    Google Scholar 

  2. Kuribara H, Shindo Y, Matsuoka T, Takubo K, Futo S, Aoki N, Hirao T, Akiyama H, Goda Y, Toyoda M, Hino A (2002) Novel reference molecules for quantitation of genetically modified maize and soybean. J AOAC Int 85:1077–1089

    CAS  Google Scholar 

  3. Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, Toyoda M, Hino A (2002) Validation of real-time PCR analyses for line-specific quantitation of genetically modified maize and soybean using new reference molecules. J AOAC Int 85:1119–1126

    CAS  Google Scholar 

  4. Permingeat HR, Reggiardo MI, Vallejos RH (2002) Detection and quantification of transgenes in grains by multiplex and real-time PCR. J Agric Food Chem 50:4431–4436

    Article  CAS  Google Scholar 

  5. Collonnier C, Schattner A, Berthier G, Boyer F, Coué-Philippe G, Diolez A, Duplan M-N, Fernandez S, Kebdani N, Kobilinsky A, Romaniuk M, de Beuckeleer M, de Loose M, Windels P, Bertheau Y (2005) Characterization and event specific-detection by quantitative real-time PCR of T25 maize insert. J AOAC Int 88:536–546

    CAS  Google Scholar 

  6. La Paz J-L, García-Muniz N, Nadal A, Esteve T, Puigdomènech P, Pla M (2006) Interlaboratory transfer of a real-time polymerase chain reaction assay for quantitative detection of genetically modified maize event TC-1507. J AOAC Int 89:1347–1352

    Google Scholar 

  7. Li X, Yang L, Zhang J, Wang S, Shen K, Pan L, Zhang D (2009) Simplex and duplex polymerase chain reaction analysis of Herculex RW (59122) maize based on one reference molecule including separated fragments of 5′ integration site and endogenous gene. J AOAC Int 92:1472–1483

    CAS  Google Scholar 

  8. Kodama T, Kuribara H, Minegishi Y, Futo S, Watai M, Sawada C, Watanabe T, Akiyama H, Maitani T, Teshima R, Furui S, Hino A, Kitta K (2009) Evaluation of modified PCR quantitation of genetically modified maize and soybean using reference molecules: interlaboratory study. J AOAC Int 92:223–233

    CAS  Google Scholar 

  9. Berdal K, Holst-Jensen A (2001) Roundup Ready® soybean event-specific real-time quantitative PCR assay and estimation of the practical detection and quantification limits in GMO analyses. Eur Food Res Technol 213:432–438

    Article  CAS  Google Scholar 

  10. Taverniers I, Windels P, Van Bockstaele E, De Loose M (2001) Use of cloned DNA fragments for event-specific quantification of genetically modified organisms in pure and mixed food products. Eur Food Res Technol 213:417–424

    Article  CAS  Google Scholar 

  11. Baeumler S, Wulff D, Tagliani L, Song P (2006) A real-time quantitative PCR detection method specific to widestrike transgenic cotton (event 281-24-236/3006-210-23). J Agric Food Chem 54:6527–6534

    Article  CAS  Google Scholar 

  12. Yang L, Pan A, Zhang K, Yin C, Qian B, Chen J, Huang C, Zhang D (2005) Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531. Transgenic Res 14:817–831

    Article  CAS  Google Scholar 

  13. Wu G, Wu Y, Xiao L, Lu C (2008) Event-specific qualitative and quantitative polymerase chain reaction methods for detection of genetically modified rapeseed Ms8xRf3 based on the right border junctions. J AOAC Int 91:143–151

    CAS  Google Scholar 

  14. James C (2012) Global Status of Commercialized Biotech/GM Crops: 2012, ISAAA Brie. ISAAA, Ithaca

    Google Scholar 

  15. Akiyama H, Watanabe T, Wakabayashi K, Nakade S, Yasui S, Sakata K, Chiba R, Spiegelhalter F, Hino A, Maitani T (2005) Quantitative detection system for maize sample containing combined-trait genetically modified maize. Anal Chem 77:7421–7428

    Article  CAS  Google Scholar 

  16. Akiyama H, Sakata K, Makiyma D, Nakamura K, Teshima R, Nakashima A, Ogawa A, Yamagishi T, Futo S, Oguchi T, Mano J, Kitta K (2011) Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize. J AOAC Int 94:1540–1547

    Article  CAS  Google Scholar 

  17. Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) Development of a multiplex polymerase chain reaction method for simultaneous detection of eight events of genetically modified maize. J Agric Food Chem 53:9713–9721

    Article  CAS  Google Scholar 

  18. Oguchi T, Onishi M, Mano J, Akiyama H, Teshima R, Futo S, Furui S, Kitta K (2010) Development of multiplex PCR method for simultaneous detection of four events of genetically modified maize: DAS-59122-7, MIR604, MON863 and MON88017. J Food Hyg Soc Jpn 51:92–100

    Article  CAS  Google Scholar 

  19. Department of Food Safety Ministry of Health Labour and Welfare of Japan (2009) Notice No. 0803, Article 8

  20. Bilder CR, Tebbs JM (2009) Bias, efficiency, and agreement for group-testing regression models. J Stat Comput Simul 79:67–80

    Article  Google Scholar 

  21. Chen CL, Swallow WH (1990) Using group testing to estimate a proportion, and to test the binomial model. Biometrics 46:1035–1046

    Article  CAS  Google Scholar 

  22. Yamamura K, Hino A (2007) Estimation of the proportion of defective units by using group testing under the existence of a threshold of detection. Commun Stat Simul Comput 36:949–957

    Article  Google Scholar 

  23. Mano J, Yanaka Y, Ikezu Y, Onishi M, Futo S, Minegishi Y, Ninomiya K, Yotsuyanagi Y, Spiegelhalter F, Akiyama H, Teshima R, Hino A, Naito S, Koiwa T, Takabatake R, Furui S, Kitta K (2011) Practicable group testing method to evaluate weight/weight GMO content in maize grains. J Agric Food Chem 59:6856–6863

    Article  CAS  Google Scholar 

  24. Akiyama H, Sakata K, Kondo K, Tanaka A, Liu MS, Oguchi T, Furui S, Kitta K, Hino A, Teshima R (2008) Individual detection of genetically modified maize varieties in non-identity-preserved maize samples. J Agric Food Chem 56:1977–1983

    Article  CAS  Google Scholar 

  25. Akiyama H, Minegishi Y, Makiyama D, Mano J, Sakata K, Nakamura K, Noguchi A, Takabatake R, Futo S, Kondo K, Kitta K, Kato Y, Teshima R (2012) Quantification and identification of genetically modified maize events in non-identity preserved maize samples in 2009 using an individual kernel detection system. J Food Hyg Soc Jpn 53:157–165

    Article  CAS  Google Scholar 

  26. Cavato T, Coombe T, Johnson S (2003) Patent No. US20060095986: Corn event pv-zmir13 (mon863) plants and compositions and methods for detection thereof

  27. Joint Research Centre-European Commission (2005) Event-specific method for the quantitation of maize line TC 1507 using real-time PCR Protocol. http://gmo-crl.jrc.ec.europa.eu/summaries/TC1507-WEB-Protocol-Validation.pdf

  28. Joint Research Centre-European Commission (2006) CRL assessment on the validation of an event specific method for the relative quantitation of maize line MON 810 DNA using real-time PCR as carried out by Federal Institute for Risk Assessment (BfR). http://gmo-crl.jrc.ec.europa.eu/summaries/Mon810_validation_report.pdf

  29. Joint Research Centre-European Commission (2007) Event-specific method for the quantitation of maize 59122 using real-time PCR Protocol. http://gmo-crl.jrc.ec.europa.eu/summaries/59122-ProtocolValidation.pdf

  30. Joint Research Centre-European Commission (2010) Event-specific method for the quantitation of maize line MON 88017 using real-time PCR Protocol. http://gmo-crl.jrc.ec.europa.eu/summaries/MON88017_validated_Method_correctedversion1.pdf

  31. Yoshimura T, Kuribara H, Matsuoka T, Kodama T, Iida M, Watanabe T, Akiyama H, Maitani T, Furui S, Hino A (2005) Applicability of the quantification of genetically modified organisms to foods processed from maize and soy. J Agric Food Chem 53:2052–2059

    Article  CAS  Google Scholar 

  32. Hernández M, Duplan M-N, Berthier G, Vaïtilingom M, Hauser W, Freyer R, Pla M, Bertheau Y (2004) Development and comparison of four real-time polymerase chain reaction systems for specific detection and quantification of Zea mays L. J Agric Food Chem 52:4632–4637

    Article  Google Scholar 

  33. Joint Research Centre-European Commission (2005) Event-specific method for the quantitation of maize line MON 863 using real-time PCR Protocol. http://gmo-crl.jrc.ec.europa.eu/summaries/MON863-WEB-Protocol-Validation.pdf

  34. Joint Research Centre-European Commission (2005) Event-specific method for the quantitation of maize line NK 603 using real-time PCR Protocol. http://gmo-crl.jrc.ec.europa.eu/summaries/NK603report_mm.pdf

  35. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  36. Trifa Y, Zhang D (2004) DNA content in embryo and endosperm of maize kernel (Zea mays L.): impact on GMO quantification. J Agric Food Chem 52:1044–1048

    Article  CAS  Google Scholar 

  37. Heck GR, Armstrong CL, Astwood JD, Behr CF, Bookout JT, Brown SM, Cavato TA, DeBoer DL, Deng MY, George C, Hillyard JR, Hironaka CM, Howe AR, Jakse EH, Ledesma BE, Lee TC, Lirette RP, Mangano ML, Mutz JN, Qi Y, Rodriguez RE, Sidhu SR, Silvanovich A, Stoecker MA, Yingling RA, You J (2005) Development and characterization of a CP4 EPSPS-Based, Glyphosate-Tolerant Corn Event. Crop Sci 45:329–339

    Article  CAS  Google Scholar 

  38. Joint Research Centre-European Commission (2010) Event-specific method for the quantitation of maize line MON 88017 using real-time PCR Validation Report. http://gmo-crl.jrc.ec.europa.eu/summaries/MON88017_val_report_correctedVersion1.pdf

  39. Joint Research Centre-European Commission (2006) Event-specific method for the quantitation of maize line NK 603 using real-time PCR Validation Report. http://gmo-crl.jrc.ec.europa.eu/summaries/NK603report_mm.pdf

  40. Joint Research Centre-European Commission (2005) Event-specific method for the quantitation of maize line TC 1507 using real-time PCR Validation Report. http://gmo-crl.jrc.ec.europa.eu/summaries/TC1507-report_mm.pdf

  41. Joint Research Centre-European Commission (2006) Event-specific method for the quantitation of maize line DAS-59122-7 using real-time PCR Validation Report. http://gmo-crl.jrc.ec.europa.eu/summaries/59122_val_report.pdf

  42. Joint Research Centre-European Commission (2005) Event-specific method for the quantitation of maize line MON 863 using real-time PCR Validation Report. http://gmo-crl.jrc.ec.europa.eu/summaries/MON863-Val-report_mm.pdf

  43. United States Department of Agriculture (2013) USDA’s National Agricultural Statistics Service. Genetically engineered varieties of corn, upland cotton, and soybeans, by State and for the Unites States, 2000-13. http://www.ers.usda.gov/datafiles/Adoption_of_Genetically_Engineered_Crops_in_the_US/alltables.xls

  44. Mano J, Shigemitsu N, Futo S, Akiyama H, Teshima R, Hino A, Furui S, Kitta K (2009) Real-time PCR array as a universal platform for the detection of genetically modified crops and its application in identifying unapproved genetically modified crops in Japan. J Agric Food Chem 57:26–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Monsanto Co. and Pioneer Hi-Bred International for providing the reference materials. This study was supported in part by a Grant from the Ministry of Health, Labour and Welfare of Japan.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Kondo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noguchi, A., Akiyama, H., Nakamura, K. et al. A novel trait-specific real-time PCR method enables quantification of genetically modified (GM) maize content in ground grain samples containing stacked GM maize. Eur Food Res Technol 240, 413–422 (2015). https://doi.org/10.1007/s00217-014-2340-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2340-7

Keywords

Navigation