Skip to main content
Log in

Quality of fresh-cut radicchio cv. Rosso di Chioggia (Cichorium intybus L. var. foliosum Hegi) as affected by water jet cutting and different washing procedures

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The objective of the present study was to evaluate the effect of water jet cutting (nozzle diameter 0.1 mm, pressure 2,500 bar) versus conventional blade cutting as well as washing (4 °C, 120 s) prior to and after shredding on the quality of fresh-cut radicchio, respectively. For this purpose, fresh-cut radicchio cv. Rosso di Chioggia was produced on pilot-plant scale applying five different processing lines. Throughout storage (4 °C, up to 12 days), O2 and CO2 levels in the modified atmosphere of the consumer-sized sample bags were monitored, as well as phenylalanine ammonia lyase activities, levels of anthocyanins and bitter sesquiterpene lactones (SLs). Furthermore, bacterial viable counts of fresh-cut products and process waters, and the chemical oxygen demand of the process waters were assessed. Throughout storage, water jet cutting did not alter the physiological condition nor the microbiological quality of the fresh-cut produce compared to blade cutting using a newly sharpened blade. Moreover, leaching of SLs through washing was comparable in blade and water jet cut samples. Thus, a similar degree of tissue wounding due to both cutting techniques applied may be assumed. Washing radicchio prior to shredding resulted in reduced leaching of SLs and a lower degree of microbial and organic contamination of the process water. However, compared to conventional washing, pre-washing was slightly less effective in reducing microbial counts on the produce. While levels of anthocyanins remained constant throughout storage, unaffected by different processing, SL profiles substantially changed in samples of all processing lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schlaghecken J (2009) Salatanbau in Deutschland, immer größer, immer bunter, immer professioneller. Monatsschrift, Magazin für den Gartenbau-Profi, Sonderdruck, pp 1–8

    Google Scholar 

  2. Shiu ECC, Dawson JA, Marshall DW (2004) Segmenting the convenience and health trends in the British food market. Br Food J 106:106–127

    Article  Google Scholar 

  3. Lindel D (2011) The Food and Beverage Industry in Germany. Industry overview. Germany Trade & Invest, Berlin

    Google Scholar 

  4. Illert S (2008) Die kleine Marktstudie: Küchenfertige Salate. Gemüse 3:72–74

    Google Scholar 

  5. GfK Panel Services Deutschland & Bundesvereinigung der Deutschen Ernährungsindustrie e.V. (2011) Consumer’s Choice’11, Lebensmittelqualität im Verbraucherfokus: Chancen für Ernährungsindustrie und Handel

  6. De Roever C (1998) Microbiological safety evaluations and recommendations on fresh produce. Food Control 9:321–347

    Article  Google Scholar 

  7. Aruscavage D, Lee K, Miller S, LeJeune JT (2006) Interactions affecting the proliferation and control of human pathogens on edible plants. J Food Sci 71:R89–R99

    Article  CAS  Google Scholar 

  8. Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137:307–315

    Article  CAS  Google Scholar 

  9. Ramos B, Miller FA, Brandão TRS, Teixeira P, Silva CLM (2013) Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol 20:1–15

    Article  CAS  Google Scholar 

  10. Saltveit ME (1997) Physical and physiological changes in minimally processed fruits and vegetables. In: Tomás-Barberán FA (ed) Phytochemistry of fruit and vegetables. Oxford University Press, Oxford

    Google Scholar 

  11. Barry-Ryan C, O’Beirne D (1998) Quality and shelf-life of fresh cut carrot slices as affected by slicing method. J Food Sci 63:851–856

    Article  CAS  Google Scholar 

  12. Deza-Durand KM, Petersen MA (2011) The effect of cutting direction on aroma compounds and respiration rate of fresh-cut iceberg lettuce (Lactuca sativa L.). Postharvest Biol Technol 61:83–90

    Article  CAS  Google Scholar 

  13. Henning A (1998) Cutting with high-pressure jet in the food industry. Fleischwirtschaft 78:43–45

    Google Scholar 

  14. Garg N, Churey JJ, Splittstoesser DF (1990) Effect of processing conditions on the microflora of fresh-cut vegetables. J Food Protect 53:701–703

    Google Scholar 

  15. Brandl MT (2008) Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce. Appl Environ Microbiol 74:5285–5289

    Article  CAS  Google Scholar 

  16. Becker R, Gray GM (1992) Evaluation of a water jet cutting system for slicing potatoes. J Food Sci 57:132–137

    Article  Google Scholar 

  17. McGlynn WG, Bellmer DD, Reilly SS (2003) Effect of precut sanitizing dip and water jet cutting on quality and shelf-life of fresh-cut watermelon. J Food Qual 26:489–498

    Article  Google Scholar 

  18. Carreño-Olejua R, Hofacker WC, Hensel O (2010) High-pressure water-jet technology as a method of improving the quality of post-harvest processing. Food Bioprocess Technol 3:853–860

    Article  Google Scholar 

  19. Wulfkuehler S, Stark S, Dietz J, Schmidt H, Weiss A, Carle R (2014) Effect of water jet cutting and moderate heat treatment on quality of fresh-cut red oak leaf lettuce (Lactuca sativa L. var. crispa). Food Bioprocess Technol. doi:10.1007/s11947-014-1360-4

  20. Wulfkuehler S, Gras C, Carle R (2013) Sesquiterpene lactone content and overall quality of fresh-cut witloof chicory (Cichorium intybus L. var. foliosum Hegi) as affected by different washing procedures. J Agric Food Chem 61:7705–7714

    Article  CAS  Google Scholar 

  21. Wulfkuehler S, Kurfiss L, Kammerer DR, Weiss A, Schmidt H, Carle R (2013) Impact of different washing procedures on quality of fresh-cut iceberg lettuce (Lactuca sativa var. capitata L.) and endive (Cichorium endivia L.). Eur Food Res Technol 236:229–241

    Article  CAS  Google Scholar 

  22. Wulfkuehler S, Müller A, Weiss A, Mix K, Rebmann M, Schmidt H, Stahl M, Carle R (2014) Sanitation of process water from fresh-cut lettuce production by means of UV-C. Acta Hortic, accepted

  23. Seo MW, Yang DS, Kays SJ, Lee GP, Park KW (2009) Sesquiterpene lactones and bitterness in Korean leaf lettuce cultivars. HortScience 44:246–249

    Google Scholar 

  24. Van Beek TA, Maas P, King BM, Leclercq E, Voragen AGJ, De Groot A (1990) Bitter sesquiterpene lactones from chicory roots. J Agric Food Chem 38:1035–1038

    Article  Google Scholar 

  25. Sadilova E, Stintzing FC, Carle R (2006) Thermal degradation of acylated and nonacylated anthocyanins. J Food Sci 71:C504–C512

    Article  CAS  Google Scholar 

  26. Surjadinata BB, Cisneros-Zevallos L (2003) Modeling wound-induced respiration of fresh-cut carrots (Daucus carota L.). J Food Sci 68:2735–2740

    Article  CAS  Google Scholar 

  27. Martínez I, Ares G, Lema P (2008) Influence of cut and packaging film on sensory quality of fresh-cut butterhead lettuce (Lactuca sativa L., cv. Wang). J Food Qual 31:48–66

    Article  Google Scholar 

  28. Baur S, Klaiber R, Wei H, Hammes WP, Carle R (2005) Effect of temperature and chlorination of pre-washing water on shelf-life and physiological properties of ready-to-use iceberg lettuce. Innov Food Sci Emerg Technol 6:171–182

    Article  CAS  Google Scholar 

  29. Wu VCH, Jitareerat P, Fung DYC (2003) Comparison of the pulsifier and the stomacher for recovering microorganisms in vegetables. J Rapid Methods Autom Microbiol 11:145–152

    Article  Google Scholar 

  30. Zagory D (1999) Effects of post-processing handling and packaging on microbial populations. Postharvest Biol Technol 15:313–321

    Article  Google Scholar 

  31. King AD, Magnuson JA, Török T, Goodman N (1991) Microbial flora and storage quality of partially processed lettuce. J Food Sci 56:459–461

    Article  Google Scholar 

  32. Laurila E, Ahvenainen R (2002) Minimal processing in practice. In: Ohlsson T, Bengtsson N (eds) Minimal processing technologies in the food industry. CRC Press, Boca Raton

    Google Scholar 

  33. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822

    Article  CAS  Google Scholar 

  34. Williams TR, Moyne A, Harris LJ, Marco ML (2013) Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS ONE 8:1–14

    Google Scholar 

  35. Höfte M, De Vos P (2006) Plant pathogenic Pseudomonas species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dodrecht

    Google Scholar 

  36. Barth M, Hankinson TR, Zhuang H, Breidt F (2009) Microbiological spoilage of fruits and vegetables. In: Sperber WH, Doyle MP (eds) Compendium of the microbiological spoilage of foods and beverages. Springer, New York

    Google Scholar 

  37. Francis GA, Thomas C, O’Beirne D (1999) The microbiological safety of minimally processed vegetables. Int J Food Sci Technol 34:1–22

    Article  CAS  Google Scholar 

  38. da Cruz AG, Cenci SA, Maia MCA (2006) Quality assurance requirements in produce processing. Trends Food Sci Technol 17:406–411

    Article  Google Scholar 

  39. Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67:2342–2353

    Google Scholar 

  40. Baur S, Klaiber R, Hammes WP, Carle R (2004) Factors affecting the efficacy of washing procedures used in the production of prepared salads. Innov Food Sci Emerg Technol 5:45–55

    Article  CAS  Google Scholar 

  41. Adams MR, Hartley AD, Cox LJ (1989) Factors affecting the efficacy of washing procedures used in the production of prepared salads. Food Microbiol 6:69–77

    Article  Google Scholar 

  42. DGHM (Deutsche Gesellschaft für Hygiene und Mikrobiologie) (2011) Veröffentlichte mikrobiologische Richt- und Warnwerte zur Beurteilung von Lebensmitteln. http://www.dghm.org/m_275. Accessed 23 June 2014

  43. Allende A, Selma MV, López-Gálvez F, Villaescusa R, Gil MI (2008) Impact of wash water quality on sensory and microbial quality, including Escherichia coli cross-contamination, of fresh-cut escarole. J Food Prot 71:2514–2518

    CAS  Google Scholar 

  44. Luo Y (2007) Fresh-cut produce wash water reuse affects water quality and packaged product quality and microbial growth in Romaine lettuce. HortScience 42:1413–1419

    Google Scholar 

  45. Selma MV, Allende A, López-Gálvez F, Conesa MA, Gil MI (2008) Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry. Food Microbiol 25:809–814

    Article  CAS  Google Scholar 

  46. López-Gálvez G, Saltveit M, Cantwell M (1996) Wound-induced phenylalanine ammonia lyase activity: factors affecting its induction and correlation with the quality of minimally processed lettuces. Postharvest Biol Technol 9:223–233

    Article  Google Scholar 

  47. Tomás-Barberán FA, Gil MI, Castañer M, Artés F, Saltveit ME (1997) Effect of selected browning inhibitors on phenolic metabolism in stem tissue of harvested lettuce. J Agric Food Chem 45:583–589

    Article  Google Scholar 

  48. Fukumoto LR, Toivonen PMA, Delaquis PJ (2002) Effect of wash water temperature and chlorination on phenolic metabolism and browning of stored iceberg lettuce photosynthetic and vascular tissues. J Agric Food Chem 50:4503–4511

    Article  CAS  Google Scholar 

  49. Loaiza-Velarde JG, Saltveit ME (2001) Heat shocks applied either before or after wounding reduce browning of lettuce leaf tissue. J Am Soc Hortic Sci 126:227–234

    Google Scholar 

  50. Baur S, Klaiber RG, Koblo A, Carle R (2004) Effect of different washing procedures on phenolic metabolism of shredded, packaged iceberg lettuce during storage. J Agric Food Chem 52:7017–7025

    Article  CAS  Google Scholar 

  51. Ritenour MA, Saltveit ME (1996) Effects of temperature on ethylene-induced phenylalanine ammonia lyase activity and russet spotting in harvested iceberg lettuce. Physiol Plant 97:327–331

    Article  CAS  Google Scholar 

  52. Ke D, Saltveit ME (1989) Regulation of russet spotting, phenolic metabolism, and IAA oxidase by low oxygen in iceberg lettuce. J Am Soc Hortic Sci 114:638–642

    CAS  Google Scholar 

  53. Sessa RA, Bennett MH, Lewis MJ, Mansfield JW, Beale MH (2000) Metabolite profiling of sesquiterpene lactones from Lactuca species: major latex components are novel oxalate and sulfate conjugates of lactucin and its derivatives. J Biol Chem 275:26877–26884

    CAS  Google Scholar 

  54. Ferioli F, D’Antuono LF (2012) An update procedure for an effective and simultaneous extraction of sesquiterpene lactones and phenolics from chicory. Food Chem 135:243–250

    Article  CAS  Google Scholar 

  55. Wulfkuehler S, Gras C, Carle R (2014) Influence of light exposure during storage on the content of sesquiterpene lactones and photosynthetic pigments in witloof chicory (Cichorium intybus L. var. foliosum Hegi). LWT Food Sci Technol 58:417–426

    Article  CAS  Google Scholar 

  56. De Kraker J, Franssen MCR, Joerink M, De Groot A, Bouwmeester HJ (2002) Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome P450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. Plant Physiol 129:257–268

    Article  Google Scholar 

  57. Peters AM, Van Amerongen A (1996) Sesquiterpene lactones in chicory (Cichorium intybus L.): distribution in chicons and effect of storage. Food Res Int 29:439–444

    Article  CAS  Google Scholar 

  58. Ferreres F, Gil MI, Castañer M, Tomás-Barberán FA (1997) Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. J Agric Food Chem 45:4249–4254

    Article  Google Scholar 

  59. Mulabagal V, Ngouajio M, Nair A, Zhang Y, Gottumukkala AL, Nair MG (2010) In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem 118:300–306

    Article  CAS  Google Scholar 

  60. Innocenti M, Gallori S, Giaccherini C, Ieri F, Vincieri FF, Mulinacci N (2005) Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L. J Agric Food Chem 53:6497–6502

    Article  CAS  Google Scholar 

  61. Rossetto M, Lante A, Vanzani P, Spettoli P, Scarpa M, Rigo A (2005) Red chicories as potent scavengers of highly reactive radicals: a study on their phenolic composition and peroxyl radical trapping capacity and efficiency. J Agric Food Chem 53:8169–8175

    Article  CAS  Google Scholar 

  62. Bridle P, Thomas Loeffler RST, Timberlake CF, Self R (1984) Cyanidin 3-malonylglucoside in Cichorium intybus. Phytochemistry 23:2968–2969

    Article  CAS  Google Scholar 

  63. Carazzone C, Mascherpa D, Gazzani G, Papetti A (2013) Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem 138:1062–1071

    Article  CAS  Google Scholar 

  64. Lavelli V, Pagliarini E, Ambrosoli R, Zanoni B (2009) Quality of minimally processed red chicory (Cichorium intybus L.) evaluated by anthocyanin content, radical scavenging activity, sensory descriptors and microbial indices. Int J Food Sci Technol 44:994–1001

    Article  CAS  Google Scholar 

  65. Spinardi A, Ferrante A (2012) Effect of storage temperature on quality changes of minimally processed baby lettuce. J Food Agric Environ 10:38–42

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kronen GmbH (Kehl, Germany) for the generous allocation of industrial equipment, and Amcor Flexibles Europe (Bristol, UK) for kindly donating the film bags. Furthermore, we are grateful to Klaus Mix for his excellent technical assistance, and gratefully acknowledge Martina Rebmann’s valuable laboratory support. The present work is part of a project funded by the Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft (BÖL, German Federal Organic Farming Scheme and Other Types of Sustainable Agriculture); Support Reference Number: 2811OE121.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Wulfkuehler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wulfkuehler, S., Dietz, J., Schmidt, H. et al. Quality of fresh-cut radicchio cv. Rosso di Chioggia (Cichorium intybus L. var. foliosum Hegi) as affected by water jet cutting and different washing procedures. Eur Food Res Technol 240, 159–172 (2015). https://doi.org/10.1007/s00217-014-2317-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2317-6

Keywords

Navigation