Skip to main content
Log in

Determination of microheterogeneous substitution in shrimp tropomyosin and its effect on IgE-binding capacity

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Tropomyosin (TM), the major shrimp allergen that belongs to a highly conserved protein family, has frequently been investigated owing to its high rate of human consumption. In this study, the sequence microheterogeneity of TMs, irrespective of the organism and differences in the N- and C-termini, from different shrimp species was analyzed. The TM sequences were analyzed using bioinformatics tools and confirmed by dot-blot using human serum. The results showed that all 13 shrimp species share high mutual TM sequence identity values, ranging from 85.5 to 99.7 %, and 60 cases of sequence microheterogeneity were identified in shrimp TM, with a sequence identity ranging from 90.1 to 99.7 %. A total of 719 unique amino acid residue substitutions (that affect 43 residues, 15 % of 284 residues) involving sequence microheterogeneity were characterized, in which 214 substitutions involving 15 residues were located in the epitope regions. About 45 % of these substitutions occurred in the TM sequences that are reported allergens, whereas 43 % of the substitutions occurred overall for the allergenic and nonallergenic TMs. Dot-blot immunoassay revealed that single microheterogeneous mutation of allergic peptides resulted in significant changes in the IgE-binding capacity of the peptides. Overall, microheterogeneous mutations of TM occurred in different shrimp species. These mutations can potentially induce changes in the IgE-binding capacity and might be responsible for variations in the hypersensitivity to different shrimp species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Monaci L, Tregoat V, van Hengel AJ, Anklam E (2006) Milk allergens, their characteristics and their detection in food: a review. J Eur Food Res Technol 223:149–179

    Article  CAS  Google Scholar 

  2. Daul CB, Slattery M, Reese G, Lehrer SB (1994) Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. J Int Arch Allergy Appl Immunol 105:49–55

    Article  CAS  Google Scholar 

  3. Leung PS, Chu KH, Chow WK, Ansari A, Bandea CI, Kwan HS (1994) Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J Allergy Clin Immunol 94:882–890

    Article  CAS  Google Scholar 

  4. Leung PS, Chow WK, Duffey S, Kwan HS, Gershwin ME, Chu KH (1996) IgE reactivity against a cross-reactive allergen in crustacea and mollusca: evidence for tropomyosin as the common allergen. J Allergy Clin Immunol 98:954–961

    Article  CAS  Google Scholar 

  5. Leung PS, Chen YS, Mykles DL, Chow WK, Li CP, Chu KH (1998) Molecular identification of the lobster muscle protein tropomyosin, as a seafood allergen. J Mol Mar Bio Biotechnol 7:12–20

    CAS  Google Scholar 

  6. Leung PS, Chen YS, Gershwin ME, Wong SH, Kwan HS, Chu KH (1998) Identification and molecular characterization of Charybdis feriatus tropomyosin, the major crab allergen. J Allergy Clin Immunol 102:847–852

    Article  CAS  Google Scholar 

  7. Motoyama K, Ishizaki S, Nagashima Y, Shiomi K (2006) Cephalopod tropomyosins: identification as major allergens and molecular cloning. J Food Chem Toxicol 44:1997–2002

    Article  CAS  Google Scholar 

  8. Motoyama K, Suma Y, Ishizaki S, Nagashima Y, Shiomi K (2007) Molecular cloning of tropomyosins identified as allergens in six species of Crustaceans. J Agric Food Chem 55(3):985–991

    Article  CAS  Google Scholar 

  9. Ivanciuc O, Midoro-Horiuti T, Schein CH, Xie L, Hillman GR, Goldblum RM (2009) The property distance index PD predicts peptides that cross-react with IgE antibodies. J Mol Immunol 46(5):873–883

    Article  CAS  Google Scholar 

  10. Chinratanapisit S, Visitsunthorn N, Vichyanond P, Jirapongsananuruk O (2005) Isolated Macrobrachium rosenbergii (M. rosenbergii) allergy apart from Penaeus monodon (P. monodon) allergy in shrimp allergic children. J Allergy Clin Immunol Abstr 115:S244

    Article  Google Scholar 

  11. Lapteva YS et al (2013) Sequence microheterogeneity of parvalbumin, the major fish allergen. J Biochim Biophys Acta. doi:10.1016/j.bbapap.2013.04.025

    Google Scholar 

  12. Jenkins JA, Breiteneder H, Mills EN (2007) Evolutionary distance from Homo sapiens homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol 120:1399–1405

    Article  CAS  Google Scholar 

  13. Breiteneder H, Ferreira F, Hoffmann-Sommergruber K, Ebner C, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1993) Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur J Biochem 212:355–362

    Article  CAS  Google Scholar 

  14. Hales BJ, Hazell LA, Smith W, Thomas WR (2002) Genetic variation of Der p 2 allergens: effects on T cell responses and immunoglobulin E binding. J Clin Exp Allergy 32:1461–1467

    Article  CAS  Google Scholar 

  15. Park JW, Kim KS, Jin HS, Kim CW, Kang DB, Choi SY, Yong TS, Oh SH, Hong CS (2002) Der p 2 isoallergens have different allergenicity, and quantification with 2-site ELISA using monoclonal antibodies is influenced by the isoallergens. J Clin Exp Allergy 32:1042–1047

    Article  CAS  Google Scholar 

  16. Gafvelin G, Parmley S, Neimert-Andersson T, Blank U, Eriksson TL, Hage M, Punnonen J (2007) Hypoallergens for allergen-specific immunotherapy by directed molecular evolution of mite group 2 allergens. J Biol Chem 282:3778–3787

    Article  CAS  Google Scholar 

  17. Consortium TU (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75

    Article  Google Scholar 

  18. IBI RAS, Pushchino, Russia, written in Embarcadero® Delphi® 2010 v.14.0, Embarcadero Technologies, Inc.

  19. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. J BMC Bioinform 7:208

    Article  Google Scholar 

  20. Permyakov SE, Ismailov RG, Xue B, Denesyuk AI, Uversky VN, Permyakov EA (2011) Intrinsic disorder in S100 proteins. J Mol Biosyst 7:2164–2180

    Article  CAS  Google Scholar 

  21. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–W310

    Article  CAS  Google Scholar 

  22. Khan S, Vihinen M (2010) Performance of protein stability predictors. J Hum Mutat 31:675–684

    Article  CAS  Google Scholar 

  23. Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA (2008) PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res 36:W35–W41

    Article  CAS  Google Scholar 

  24. Kobayashi A, Tanaka H, Hamada Y, Ishizak S, Nagashima Y, Shiomi K (2006) Comparison of allergenicity and allergens between fish white and dark muscles. J Allergy 61:357–363

    Article  CAS  Google Scholar 

  25. Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB (2002) Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. J Int Arch Allergy Immunol 129:38–48

    Article  CAS  Google Scholar 

  26. Ayuso R, Lehrer SB, Reese G (2002) Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). J Int Arch Allergy Immunol 127:27–37

    Article  CAS  Google Scholar 

  27. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. J Biophys 92:1439–1456

    Article  CAS  Google Scholar 

  28. Pomés A (2008) Common structures of allergens. Revue française d’allergologie et d’immunologie clinique 48:139–142

    Article  Google Scholar 

  29. Lehrer SB, McCants ML (1987) Reactivity of IgE antibodies with crustacean and oyster allergens: evidence for common antigenic structures. J Allergy Clin Immunol 80:133–139

    Article  CAS  Google Scholar 

  30. Reese G, Ayuso R, Lehrer SB (1999) Tropomyosin: an invertebrate pan-allergen. J Int Arch Allergy Immunol 119:247–258

    Article  CAS  Google Scholar 

  31. Pamela M, Renato T, Michael BS, Elsbeth KG, Reto C, Adriano M, Peter SG, Sylvia MM, Beda MS, Monique V (2007) Allergen motifs and the prediction of allergenicity. J Immunol Lett 109:47–55

    Article  Google Scholar 

  32. Ferreira F, Hirtenlehner K, Jilek A, Godnik-Cvar J, Breiteneder H, Grimm R, Hoffmann-Sommergruber K, Scheiner O, Kraft D, Breitenbach M, Rheinberger HJ, Ebner C (1996) Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med 183:599–609

    Article  CAS  Google Scholar 

  33. Wagner S, Radauer C, Bublin M, Hoffmann-Sommergruber K, Kopp T, Greisenegger EK, Vogel L, Vieths S, Scheiner O, Breiteneder H (2008) Naturally occurring hypoallergenic Bet v 1 isoforms fail to induce IgE responses in individuals with birch pollen allergy. J Allergy Clin Immunol 121:246–252

    Article  CAS  Google Scholar 

  34. Schenk S, Hoffmann-Sommergruber K, Breiteneder H, Ferreira F, Fischer G, Scheiner O, Kraft D, Ebner C (1994) Four recombinant isoforms of Cor a 1, the major allergen of hazel pollen, show different reactivities with allergen-specific T-lymphocyte clones. Eur J Biochem 224:717–722

    Article  CAS  Google Scholar 

  35. Gonzalez EM, Villalba M, Lombardero M, Aalbers M, Ree R, Rodriguez R (2002) Influence of the 3D-conformation, glycan component and microheterogeneity on the epitope structure of Ole e 1, the major olive allergen. Use of recombinant isoforms and specific monoclonal antibodies as immunological tools. J Mol Immunol 39:93–101

    Article  CAS  Google Scholar 

  36. Nobuhiko T, Dan ST (2009) Stability effects of mutations and protein evolvability. J Curr Opin Struct Biol 19:596–604

    Article  Google Scholar 

  37. Gerald R, Julia V, Susan ML, Matthew P, Iris L, Stefanie R, Mar M, Rosalia A, Samuel BL, Stefan V (2005) Reduced allergenic potency of VR9-1, a mutant of the major shrimp allergen Pen a 1 (tropomyosin). J Immunol 175:8354–8364

    Article  Google Scholar 

  38. Steven J, Nina K, Wesley A, Huang SK, Hugh S, Gael C, Ricki MH, Michael C, Gary A, Bannon l (1996) Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. J Arch Biochem Biophys 342(2):244–253

    Google Scholar 

  39. Rudolf V, Peter Y, Susanne S, Ines S (2010) Hypoallergenic mutant polypeptides based on fish parvalbumin [P]. Patent Application Publication in United States

Download references

Acknowledgments

The authors thank Dr. Chen Guan-zhi from Qingdao Medical College for initiating studies on the prevalence of seafood allergies in China. This work was supported by National Natural Science Foundation of China (Grants 31371730) and Program for Changjiang Scholars and Innovative Research Team in University.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenXing Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Li, Z., Lin, H. et al. Determination of microheterogeneous substitution in shrimp tropomyosin and its effect on IgE-binding capacity. Eur Food Res Technol 239, 941–949 (2014). https://doi.org/10.1007/s00217-014-2291-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2291-z

Keywords

Navigation