Skip to main content
Log in

Protein changes during malting and brewing with focus on haze and foam formation: a review

  • Review Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Beer is a complex mixture of over 450 constituents and, in addition, it contains macromolecules such as proteins, nucleic acids, polysaccharides, and lipids. In beer, several different protein groups, originating from barley, barley malt, and yeast, are known to influence beer quality. Some of them play a role in foam formation and mouthfeel, and others are known to form haze and have to be precipitated to guarantee haze stability, since turbidity gives a first visual impression of the quality of beer to the consumer. These proteins are derived from the malt used and are influenced, modified, and aggregated throughout the whole malting and brewing process. During malting, barley storage proteins are partially degraded by proteinases into amino acids and peptides that are critical for obtaining high-quality malt and therefore high-quality wort and beer. During mashing, proteins are solubilized and transferred into the produced wort. Throughout wort boiling proteins are glycated and coagulated being possible to separate those coagulated proteins from the wort as hot trub. In fermentation and maturation process, proteins aggregate as well, because of low pH, and can be separated. The understanding of beer protein also requires knowledge about the barley cultivar characteristics on barley/malt proteins, hordeins, protein Z, and LTP1. This review summarizes the protein composition and functions and the changes of malt proteins in beer during the malting and brewing process. Also methods for protein identification are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kunze W (2007) Technologie Brauer und Mälzer, vol 9. VLB Berlin

  2. Narziß L et al (1999) Die Technologie der Malzbereitung, Die Bierbrauerei. Ferdinand Enke Verlag, Stuttgart, Germany

    Google Scholar 

  3. Celus I et al (2006) The effects of malting and mashing on barley protein extractability. J Cereal Sci 44(2):203–211

    Article  CAS  Google Scholar 

  4. Finnie C, Svensson B (2003) Feasibility study of a tissue-specific approach to barley proteome analysis: aleurone layer, endosperm, embryo and single seeds. J Cereal Sci 38(2):217–227

    Article  CAS  Google Scholar 

  5. Finnie C, Svensson B (2009) Barley seed proteomics from spots to structures. J Proteomics 72(3):315–324

    Article  CAS  Google Scholar 

  6. Jones BL et al (2000) Quantitative study of the formation of endoproteolytic activities during malting and their stabilities to kilning. J Agric Food Chem 48(9):3898–3905

    Article  CAS  Google Scholar 

  7. Narziß L (2005) Abriss der Bierbrauerei, vol 7. Wiley VCH

  8. Osman AM et al (2002) Characterisation and assessment of the role of barley malt endoproteases during malting and mashing. J Inst Brew 108(1):62–67

    CAS  Google Scholar 

  9. Sørensen S et al (1987) Primary structure of carboxypeptidase II from malted barley. Carlsberg Res Commun 52(4):285–295

    Article  Google Scholar 

  10. Mikola L (1983) Germinating barley grains contain five acid carboxypeptidases with complementary substrate specificities. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 747(3):241–252

    Article  CAS  Google Scholar 

  11. Sørensen S et al (1986) Primary structure of carboxypeptidase I from malted barley. Carlsberg Res Commun 51(7):475–485

    Article  Google Scholar 

  12. Sørensen S et al (1989) Primary structure of carboxypeptidase III from malted barley. Carlsberg Res Commun 54(5):193–202

    Article  Google Scholar 

  13. Jones BL, Marinac L (2002) The effect of mashing on malt endoproteolytic activities. J Agric Food Chem 50(4):858–864

    Article  CAS  Google Scholar 

  14. Jones BL (1997) Malt endoproteinases; their synthesis and inactivation during malting and mashing. Eur Symp Enzymes Grain Process Proc 1:54–64

    Google Scholar 

  15. Jones BL (2005) The endogenous endoprotease inhibitors of barley and malt and their roles in malting and brewing. J Cereal Sci 42(3):271–280

    Article  CAS  Google Scholar 

  16. Jones BL (2008) The endoproteinases of barley and malt and their endogenous inhibitors. Tech Q MBAA Commun 45(3):279–282

    CAS  Google Scholar 

  17. Jones BL, Budde AD (1999) Endoproteinases and the hydrolysis of malt proteins during mashing. Proc Congr Eur Brew Conv 27:611–618

    Google Scholar 

  18. Osman AM (2003) Barley and malt proteins and proteinases: II. The purification and characterisation of five malt endoproteases, using the highly degradable barley protein fraction (HDBPF) substrate. J Inst Brew 109(2):142–149

    CAS  Google Scholar 

  19. Osman AM (2003) Barley and malt proteins and proteinases: I. Highly degradable barley protein fraction (HDBPF), a suitable substrate for Malt Endoprotease Assay. J Inst Brew 109(2):135–414

    CAS  Google Scholar 

  20. Osman AM (2003) Barley and malt proteins and proteinases: III. A simple method for estimating the combined actions of malt proteinases and the extent of protein degradation during malting. J Inst Brew 109(2):150–153

    CAS  Google Scholar 

  21. Jones BL (2005) Endoproteases of barley and malt. J Cereal Sci 42(2):139–156

    Article  CAS  Google Scholar 

  22. Zhang NY, Jones BL (1995) Characterization of germinated barley endoproteolytic enzymes by 2-dimensional gel-electrophoresis. J Cereal Sci 21(2):145–153

    Article  CAS  Google Scholar 

  23. Jones BL, Budde AD (2005) How various malt endoproteinase classes affect wort soluble protein levels. J Cereal Sci 41(1):95–106

    Article  CAS  Google Scholar 

  24. Fontanini D, Jones Berne L (2002) SEP-1–a subtilisin-like serine endopeptidase from germinated seeds of Hordeum vulgare L. cv. Morex. Planta 215(6):885–893

    Article  CAS  Google Scholar 

  25. Perrocheau L et al (2006) Stability of barley and malt lipid transfer protein 1 (LTP1) toward heating and reducing agents: relationships with the brewing process. J Agric Food Chem 54(8):3108–3113

    Article  CAS  Google Scholar 

  26. Perrocheau L et al (2005) Probing heat-stable water-soluble proteins from barley to malt and beer. Proteomics 5(11):2849–2858

    Article  CAS  Google Scholar 

  27. Vaag P, et al. (2000) Protein and cDNA sequences of e1 hordein from barley, wheat, and/or rye, and uses thereof to enhance the quality of foam in beer. Application: WOWO Patent 99-IB15972000014237

  28. Vaag P et al (1999) Characterization of a beer foam protein originating from barley. Proc Congr Eur Brew Conv 27:157–166

    Google Scholar 

  29. Van Nierop SNE et al (2002) Studies on beer foam proteins in a commercial brewing process. Proce Conv Inst Brew (Asia Pacific Section) 27:35–40

    Google Scholar 

  30. Van Nierop SNE et al (2004) Impact of different wort boiling temperatures on the beer foam stabilizing properties of lipid transfer protein 1. J Agric Food Chem 52(10):3120–3129

    Article  CAS  Google Scholar 

  31. Evans DE, et al. (1998) The influence of malt foam-positive proteins and non-starch polysaccharides on beer foam quality. Monogr Eur Brew Conv 27 (E.B.C.-Symp Beer Foam Q, 1998):114–128

  32. Iimure T et al (2008) Novel prediction method of beer foam stability using protein Z, barley dimeric alpha -amylase inhibitor-1 (BDAI-1) and yeast thioredoxin. J Agric Food Chem 56(18):8664–8671

    Article  CAS  Google Scholar 

  33. Osborne TB (1924) Vegetable proteins. 2nd ed. revised

  34. Osborne TB (1924) Vegetable proteins. Am Food J 19:143

    Google Scholar 

  35. Osborne TB (1924) Vegetable proteins. Chem Age (London) 10:349

    Google Scholar 

  36. Osborne TB (1924) Vegetable proteins. Chem Ind 43:440

    Google Scholar 

  37. Osborne TB, Mendel LB (1924) Continuation and extension of work on vegetable proteins. Exp Stn Rec 53:364

    CAS  Google Scholar 

  38. Wieser H et al (1998) Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chem 75(5):644–650

    Article  CAS  Google Scholar 

  39. Klose C et al (2008) Protein changes during barley malting. Brauwelt 148(36):1044–1045

    CAS  Google Scholar 

  40. Bak-Jensen KS et al (2004) Two-dimensional gel electrophoresis pattern (pH 6–11) and identification of water-soluble barley seed and malt proteins by mass spectrometry. Proteomics 4(3):728–742

    Article  CAS  Google Scholar 

  41. Bobalova J et al (2008) Investigation of protein composition of barley by gel electrophoresis and MALDI mass spectrometry with regard to the malting and brewing process. J Inst Brew 114(1):22–26

    CAS  Google Scholar 

  42. Görg A et al (1992) Two-dimensional polyacrylamide gel electrophoresis, with immobilized pH gradients in the first dimension, of barley seed proteins: discrimination of cultivars with different malting grades. Electrophoresis 13(4):192–203

    Article  Google Scholar 

  43. Görg A et al (1992) Detection of polypeptides and amylase isoenzyme modifications related to malting quality during malting process of barley by two-dimensional electrophoresis and isoelectric focusing with immobilized pH gradients. Electrophoresis 13(9–10):759–770

    Article  Google Scholar 

  44. Kristoffersen HE, Flengsrud R (2000) Separation and characterization of basic barley seed proteins. Electrophoresis 21(17):3693–3700

    Article  CAS  Google Scholar 

  45. Ostergaard O et al (2004) Proteome analysis of barley seeds: Identification of major proteins from two-dimensional gels (pI 4–7). Proteomics 4(8):2437–2447

    Article  CAS  Google Scholar 

  46. Ostergaard O et al (2002) Initial proteome analysis of mature barley seeds and malt. Proteomics 2(6):733–739

    Article  CAS  Google Scholar 

  47. Finnie C et al (2006) Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci (Amsterdam, Netherlands) 170(4):808–821

    CAS  Google Scholar 

  48. Finnie C et al (2004) Aspects of the barley seed proteome during development and germination. Biochem Soc Trans 32(3):517–519

    Article  CAS  Google Scholar 

  49. Finnie C et al (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129(3):1308–1319

    Article  CAS  Google Scholar 

  50. Finnie C et al (2003) Barley proteome analysis, starch degrading enzymes and proteinaceous inhibitors. J Appl Glycosci 50(2):277–282

    CAS  Google Scholar 

  51. Flengsrud R (1993) Separation of acidic barley endosperm proteins by two-dimensional electrophoresis. Electrophoresis 14(10):1060–1066

    Article  CAS  Google Scholar 

  52. Flengsrud R, Kobro G (1989) A method for two-dimensional electrophoresis of proteins from green plant tissues. Anal Biochem 177(1):33–36

    Article  CAS  Google Scholar 

  53. Metodiev MV et al (2002) Two-dimensional electrophoretic analysis of salicylic acid-induced changes in polypeptide pattern of barley leaves. Biol Plant 45(4):585–588

    Article  CAS  Google Scholar 

  54. Shewry PR et al (1988) Two-dimensional electrophoresis of cereal prolamins: applications to biochemical and genetic analyses. Electrophoresis 9(11):727–737

    Article  CAS  Google Scholar 

  55. Sorensen SB et al (1993) Barley lipid transfer protein 1 is involved in beer foam formation. Tech Q Master Brew Assoc Am 30(4):136–145

    CAS  Google Scholar 

  56. Stanislava G (2007) Barley grain non-specific lipid-transfer proteins (ns-LTPs) in beer production and quality. J Inst Brew 113(3):310–324

    CAS  Google Scholar 

  57. Weiss W et al (1991) Barley cultivar discrimination: I Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and glycoprotein blotting. Electrophoresis 12(5):323–330

    Article  CAS  Google Scholar 

  58. Weiss W et al (1991) Barley cultivar discrimination: II Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing with immobilized pH gradients. Electrophoresis 12(5):330–337

    Article  CAS  Google Scholar 

  59. Weiss W et al (1992) Qualitative and quantitative changes in barley seed protein patterns during the malting process analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with respect to malting quality. Electrophoresis 13(9–10):787–797

    Article  CAS  Google Scholar 

  60. Görg A et al (1988) Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects. Electrophoresis 9(11):681–692

    Article  Google Scholar 

  61. Williams KM, Marshall T (1995) Protein composition of beer as revealed by high-resolution two-dimensional electrophoresis. Anal Proc 32(1):25–28

    CAS  Google Scholar 

  62. Asano K, Hashimoto N (1980) Isolation and characterization of foaming proteins of beer. J Am Soc Brew Chem 38(4):129–137

    CAS  Google Scholar 

  63. Asano K et al (1982) Characterization of haze-forming proteins of beer and their roles in chill haze formation. J Am Soc Brew Chem 40(4):147–154

    CAS  Google Scholar 

  64. Iimure T et al (2009) Construction of a novel beer proteome map and its use in beer quality control. Food Chem 118(3):566–574

    Article  CAS  Google Scholar 

  65. Iimure T et al (2009) Identification of novel haze-active beer proteins by proteome analysis. J Cereal Sci 49(1):141–147

    Article  CAS  Google Scholar 

  66. Hejgaard J (1977) Origin of a dominant beer protein immunochemical identity with a beta-amylase-associated protein from barley. J Inst Brew 83(2):94–96

    CAS  Google Scholar 

  67. Hejgaard J (1982) Purification and properties of protein Z–a major albumin of barley endosperm. Physiol Plant 54:174–182

    Article  CAS  Google Scholar 

  68. Hejgaard J (1984) Gene products of barley chromosomes 4 and 7 are precursors of the major antigenic beer protein. J Inst Brew 90(2):85–87

    CAS  Google Scholar 

  69. Hejgaard J, Bjoern SE (1985) Four major basic proteins of barley grain. Purification and partial characterization. Physiol Plant 64(3):301–307

    Article  CAS  Google Scholar 

  70. Hejgaard J, Boeg-Hansen TC (1974) Quantitative immunoelectrophoresis of barley and malt proteins. J Inst Brew London 80(5):436–442

    CAS  Google Scholar 

  71. Hejgaard J, Carlsen S (1977) Immunoelectrophoretic identification of a heterodimer beta -amylase in extracts of barley grain. J Sci Food Agric 28(10):900–904

    Article  CAS  Google Scholar 

  72. Hejgaard J, Gibbons GC (1979) Screening for a alpha -amylase in cereals. Improved gel-diffusion assay using a dye-labeled starch substrate. Carlsberg Res Commun 44(1):21–25

    Article  CAS  Google Scholar 

  73. Hejgaard J, Soerensen SB (1975) Characterization of a protein-rich beer fraction by two-dimensional immunoelectrophoretic techniques. C R Trav Lab Carlsberg 40(16):187–203

    CAS  Google Scholar 

  74. Shewry PR (1993) Barley seed proteins. Barley, pp 131–97

  75. Shewry PR et al (1978) Comparison of methods for extraction and separation of hordein fractions from 29 barley varieties. J Sci Food Agric 29(5):433–441

    Article  CAS  Google Scholar 

  76. Shewry PR, Miflin BJ (1983) Characterization and synthesis of barley seed proteins. Seed Proteins, pp 143–205

  77. Shewry PR, Miflin BJ (1985) Seed storage proteins of economically important cereals. Adv Cereal Sci Technol 7:1–83

    CAS  Google Scholar 

  78. Shewry PR et al (1978) Varietal identification of single seeds of barley by analysis of hordein polypeptides. J Sci Food Agric 29(7):587–596

    Article  CAS  Google Scholar 

  79. Mills ENC et al (1998) Immunological study of hydrophobic polypeptides in beer. J Agric Food Chem 46(11):4475–4483

    Article  CAS  Google Scholar 

  80. Ishibashi Y et al (1997) Application of ELISA to quantitative evaluation of foam-active protein in the malting and brewing processes. J Am Soc Brew Chem 55(1):20–23

    CAS  Google Scholar 

  81. Briggs D, Hough J (1981) Malting and brewing science: malt and sweet wort. Springer, New York

  82. Michael G et al (1961) Die Eiweißqualität von Körnern verschiedener Getreidearten in Abhängigkeit von Stickstoffversorgung und Entwicklungszustand. Zeitschrift für Pflanzenernährung Düngung Bodenkunde 92(2):106–116

    Article  CAS  Google Scholar 

  83. Wilson C et al (1981) The extraction and separation of barley glutelins and their relationship to other endosperm proteins. J Exp Bot 32(6):1287

    Article  CAS  Google Scholar 

  84. Kirkman MA et al (1982) The effect of nitrogen nutrition on the lysine content and protein composition of barley seeds. J Sci Food Agric 33(2):115–127

    Article  CAS  Google Scholar 

  85. Faulks AJ et al (1981) The polymorphism and structural homology of storage polypeptides (hordein) coded by the Hor-2 locus in barley (Hordeum vulgare). Biochem Genet 19(910):841–858

    Article  CAS  Google Scholar 

  86. Miflin BJ, Shewry PR (1981) Seed storage proteins: genetics, synthesis, accumulation and protein quality. Dev Plant Soil Sci 3 (Nitrogen Carbon Metab): 195–248

  87. Rahman S et al (1984) Hordein-gene expression during development of the barley (Hordeum vulgare) endosperm. Biochem J 223(2):315–322

    CAS  Google Scholar 

  88. Festenstein GN et al (1984) Immunochemical studies on barley seed storage proteins The specificity of an antibody to “C” hordein and its reaction with prolamins from other cereals. Planta 162(6):524–531

    Article  CAS  Google Scholar 

  89. Faulks AJ et al (1981) The polymorphism and structural homology of storage polypeptides (hordein) coded by the Hor-2 locus in barley (Hordeum vulgare L). Biochem Genet 19(9–10):841–858

    Article  CAS  Google Scholar 

  90. Melzer J, Kleinhofs A (1987) Molecular genetics of barley endosperm proteins. Barley Genet Newsl 17:13–24

    Google Scholar 

  91. Silva F et al (2008) Electrophoretic and HPLC methods for comparative study of the protein fractions of malts, worts and beers produced from Scarlett and Prestige barley (Hordeum vulgare L.) varieties. Food Chem 106:820–829

    Article  CAS  Google Scholar 

  92. Baxter ED, Wainwright T (1979) Hordein and malting quality. J Am Soc Brew Chem 37(1):8–12

    CAS  Google Scholar 

  93. Forde BG et al (1985) Short tandem repeats shared by B- and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO J 4(1):9–15

    CAS  Google Scholar 

  94. Shewry PR, Miflin BJ (1982) Genes for the storage proteins of barley. Qual Plant Plant Foods Hum Nutr 31(3):251–267

    Article  CAS  Google Scholar 

  95. Baxter ED (1981) Hordein in barley and malt–a review. J Inst Brew 87(3):173–176

    CAS  Google Scholar 

  96. Wilson CM et al (1981) The extraction and separation of barley glutelins and their relationship to other endosperm proteins. J Exp Bot 32(131):1287–1293

    Article  CAS  Google Scholar 

  97. Fox GP, Henry RJ (1995) Analysis of water-soluble proteins from barley by ion-exchange high performance liquid chromatography. J Inst Brew 101(3):181–185

    CAS  Google Scholar 

  98. Giese H, Hejgaard J (1984) Synthesis of salt-soluble proteins in barley. Pulse-labeling study of grain filling in liquid-cultured detached spikes. Planta 161(2):172–177

    Article  CAS  Google Scholar 

  99. Hejgaard J (1976) Free and protein-bound beta -amylases of barley grain. Characterization by two-dimensional immunoelectrophoresis. Physiol Plant 38(4):293–299

    Article  CAS  Google Scholar 

  100. Hejgaard J, Boisen S (1980) High-lysine proteins in Hiproly barley breeding: identification, nutritional significance and new screening methods. Hereditas (Lund, Swed.) 93(2):311–320

    Article  CAS  Google Scholar 

  101. Rosenkrands I et al (1994) Serpins from wheat grain. FEBS Lett 343(1):75–80

    Article  CAS  Google Scholar 

  102. Rasmussen SK et al (1991) cDNA cloning, characterization and expression of an endosperm-specific barley peroxidase. Plant Mol Biol 16(2):317–327

    Article  CAS  Google Scholar 

  103. Giese H, Hopp H (1984) Influence of nitrogen nutrition on the amount of hordein, protein Z and -amylase messenger RNA in developing endosperms of barley. Carlsberg Res Commun 49(3):365–383

    Article  CAS  Google Scholar 

  104. Brandt A et al (1990) A plant serpin gene. Structure, organization and expression of the gene encoding barley protein Z4. Eur J Biochem 194(2):499–505

    Article  CAS  Google Scholar 

  105. Rasmussen SK et al (1984) A cDNA clone for protein Z, a major barley endosperm albumin. Carlsberg Res Commun 49(3):385–390

    Article  CAS  Google Scholar 

  106. Doll H (1984) Nutritional aspects of cereal proteins and approaches to overcome their deficiencies. Philos Trans R Soc London Ser B 304(1120):373–380

    Article  CAS  Google Scholar 

  107. Rasmussen SK (1993) A gene coding for a new plant serpin. Biochim Biophys Acta 1172(1–2):151–154

    CAS  Google Scholar 

  108. Gorjanovic S et al (2007) Antimicrobial activity of malting barley grain thaumatin-like protein isoforms, S and R. J Inst Brew 113(2):206–212

    CAS  Google Scholar 

  109. Bobalova J et al (2010) Monitoring of malting process by characterization of glycation of barley protein Z. Eur Food Res Technol 230(4):665–673

    Article  CAS  Google Scholar 

  110. Heinemann B et al (1996) Structure in solution of a four-helix lipid binding protein. Protein Sci 5(1):13–23

    Article  CAS  Google Scholar 

  111. Bakan B et al (2009) The crystal structure of oxylipin-conjugated barley LTP1 highlights the unique plasticity of the hydrophobic cavity of these plant lipid-binding proteins. Biochem Biophys Res Commun 390(3):780–785

    Article  CAS  Google Scholar 

  112. Jegou S et al (2000) Purification and structural characterization of LTP1 polypeptides from beer. J Agric Food Chem 48(10):5023–5029

    Article  CAS  Google Scholar 

  113. Douliez JP et al (2000) Structure, biological, and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci 32(1):1–20

    Article  CAS  Google Scholar 

  114. Gorjanovic S et al (2005) Malting barley grain non-specific lipid-transfer protein (ns-LTP): importance for grain protection. J Inst Brew 111(2):99–104

    CAS  Google Scholar 

  115. Jones BL, Marinac LA (1995) Barley LTP1 (PAPI) and LTP2: inhibitors of green malt cysteine endoproteinases. J Am Soc Brew Chem 53(4):194–195

    CAS  Google Scholar 

  116. Evans DE, Hejgaard J (1999) The impact of malt derived proteins on beer foam quality. Part I. The effect of germination and kilning on the level of protein Z4, protein Z7 and LTP1. J Inst Brew 105(3):159–169

    CAS  Google Scholar 

  117. Evans DE et al (1999) The impact of malt derived proteins on beer foam quality Part II: the influence of malt foam-positive proteins and non-starch polysaccharides on beer foam quality. J Inst Brew 105(3):171–177

    CAS  Google Scholar 

  118. Kaersgaard P, Hejgaard J (1979) Antigenic beer macromolecules: an experimental survey of purification methods. J Inst Brew 85(2):103–111

    CAS  Google Scholar 

  119. Lundgard R, Svensson B (1989) A 39 kD barley seed protein of the serpin superfamily inhibits alpha-chymotrypsin. Carlsberg Res Commun 54(5):173–180

    Article  CAS  Google Scholar 

  120. Jones BL, Marinac LA (1997) Purification, identification, and partial characterization of a barley protein that inhibits green malt endoproteinases. J Am Soc Brew Chem 55(2):58–64

    CAS  Google Scholar 

  121. Steiner E, Back W (2009) A critical review of protein assays and further aspects of new methods in brewingscience. Brew Sci 62:90–94

    CAS  Google Scholar 

  122. Slack PT et al (1979) Inhibition by hordein of starch degradation. J Inst Brew 85(2):112–114

    CAS  Google Scholar 

  123. Osman AM et al (2003) The gel filtration chromatographic-profiles of proteins and peptides of wort and beer: effects of processing–malting, mashing, kettle boiling, fermentation and filtering. J Inst Brew 109(1):41–50

    CAS  Google Scholar 

  124. Bamforth CW (1999) Beer haze. J Am Soc Brew Chem 57(3):81–90

    CAS  Google Scholar 

  125. Curioni A et al (1995) Major proteins of beer and their precursors in barley: electrophoretic and immunological studies. J Agric Food Chem 43(10):2620–2626

    Article  CAS  Google Scholar 

  126. Hejgaard J, Kaersgaard P (1983) Purification and properties of the major antigenic beer protein of barley origin. J Inst Brew 89(6):402–410

    CAS  Google Scholar 

  127. Nadzeyka A et al (1979) The significance of beer proteins in relationship to cold break and age-related haze formation. Brauwissenschaft 32(6):167–172

    CAS  Google Scholar 

  128. Siebert KJ et al (1996) Formation of protein-polyphenol haze in beverages. J Agric Food Chem 44(8):1997–2005

    Article  CAS  Google Scholar 

  129. von Wettstein D (2007) From analysis of mutants to genetic engineering. Plant Biol 58(1):1

    Google Scholar 

  130. Leiper KA et al (2003) Beer polypeptides and silica gel. Part II. Polypeptides involved in foam formation. J Inst Brew 109(1):73–79

    CAS  Google Scholar 

  131. Leiper KA et al (2003) Beer polypeptides and silica gel Part I Polypeptides involved in haze formation. J Inst Brew 109(1):57–72

    CAS  Google Scholar 

  132. Loisa M et al (1971) Quantitative determination of some beer protein components by an immunological method. Brauwissenschaft 24(10):366–368

    CAS  Google Scholar 

  133. Bamforth C (2001) A brewer’s biochemistry. Brew Int 1(3):21–25

    Google Scholar 

  134. Siebert KJ (1999) Protein-polyphenol haze in beverages. Food Technol (Chicago) 53(1):54–57

    CAS  Google Scholar 

  135. Siebert KJ (1999) Effects of protein-polyphenol interactions on beverage haze, stabilization, and analysis. J Agric Food Chem 47(2):353–362

    Article  CAS  Google Scholar 

  136. Djurtoft R (1965) Composition of the protein and polypeptide fraction of EBC beer haze preparations. J Inst Brew 71(4):305–315

    CAS  Google Scholar 

  137. Mussche R (1990) Physico-chemical stabilization of beer using new generation gallotannins. Proc Conv Inst Brew (Aust N Z Sect) 21:136–140

    Google Scholar 

  138. Outtrup H et al (1987) The interaction between proanthocyanidins and peptides. Proc Congr Eur Brew Conv 21:583–590

    Google Scholar 

  139. Belleau G, Dadic M (1981) Beer hazes. II. Further analyses of basic components by high-performance liquid chromatography. J Am Soc Brew Chem 39(4):142–146

    CAS  Google Scholar 

  140. Dadic M, Belleau G (1980) Beer hazes. I. Isolation and preliminary analysis of phenolic and carbohydrate components. J Am Soc Brew Chem 38(4):154–158

    CAS  Google Scholar 

  141. Portero-Otin M et al (2003) Protein modification by advanced Maillard adducts can be modulated by dietary polyunsaturated fatty acids. Biochem Soc Trans 31:1403–1405

    Article  CAS  Google Scholar 

  142. Lapolla A et al (1993) The lysine glycation 1 A preliminary investigation on the products arising from the reaction of protected lysine and D-glucose. Amino Acids 5(3):389–401

    Article  CAS  Google Scholar 

  143. Leiper KA et al (2005) Optimising beer stabilisation by the selective removal of tannoids and sensitive proteins. J Inst Brew 111(2):118–127

    CAS  Google Scholar 

  144. Evans DE et al (2003) Application of immunological methods to differentiate between foam-positive and haze-active proteins originating from malt. J Am Soc Brew Chem 61(2):55–62

    CAS  Google Scholar 

  145. Lázaro A et al (1985) Differential effects of high-lysine mutations on the accumulation of individual members of a group of proteins encoded by a disperse multigene family in the endosperm of barley (Hordeum vulgare L.). Eur J Biochem 149(3):617–623

    Article  Google Scholar 

  146. Robinson LH et al (2007) The identification of a barley haze active protein that influences beer haze stability: the genetic basis of a barley malt haze active protein. J Cereal Sci 45(3):335–342

    Article  CAS  Google Scholar 

  147. Robinson LH et al (2004) The interaction between malt protein quality and brewing conditions and their impact on beer colloidal stability. Tech Q MBAA Communicator 41(4):353–362

    CAS  Google Scholar 

  148. Evans DE, Sheehan MC (2002) Don’t be fobbed off: the substance of beer foam. J Am Soc Brew Chem 60(2):47–57

    Article  CAS  Google Scholar 

  149. Kobayashi N et al (2002) A new method for evaluating foam-damaging effect by free fatty acids. J Am Soc Brew Chem 60(1):37–41

    CAS  Google Scholar 

  150. Bech LM et al (1995) Throughout the brewing process barley lipid transfer protein 1 (LTP1) is transformed into a more foam-promoting form. Proc Congr Eur Brew Conv 25:561–568

    Google Scholar 

  151. Hao J et al (2006) Identification of the major proteins in beer foam by mass spectrometry following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Am Soc Brew Chem 64(3):166–174

    CAS  Google Scholar 

  152. Onishi A et al (1999) Monoclonal antibody probe for assessing beer foam stabilizing proteins. J Agric Food Chem 47(8):3044–3049

    Article  CAS  Google Scholar 

  153. Kapp GR, Bamforth CW (2002) The foaming properties of proteins isolated from barley. J Sci Food Agric 82(11):1276–1281

    Article  CAS  Google Scholar 

  154. Lusk L et al. (1998) Foam tower fractionation of beer proteins and bittering acids. Monograph European Brew Conv 27 (E.B.C.-Symp Beer Foam Q, 1998):166–187

  155. Jin B et al (2009) Structural changes of malt proteins during boiling. Molecules 14(3):1081–1097

    Article  CAS  Google Scholar 

  156. Jin B et al (2009) Proteomics study of silica eluent proteins in beer. J Am Soc Brew Chem 67(4):183–188

    CAS  Google Scholar 

  157. Kordialik-Bogacka E, Ambroziak W (2004) Investigation of foam-active polypeptides during beer fermentation. J Sci Food Agri 84(14):1960–1968

    Article  CAS  Google Scholar 

  158. Kordialik-Bogacka E, Ambroziak W (2006) The relationship between polypeptides and foaming during fermentation. LWT Food Sci Technol 40(2):368–373

    Article  CAS  Google Scholar 

  159. Okada Y et al (2008) The influence of barley malt protein modification on beer foam stability and their relationship to the barley dimeric alpha -amylase inhibitor-I (BDAI-I) as a possible foam-promoting protein. J Agric Food Chem 56(4):1458–1464

    Article  CAS  Google Scholar 

  160. Marshall T, Williams KM (1987) High resolution two-dimensional electrophoresis of the proteins and macromolecular constituents of beer and wine. Electrophoresis 8(10):493–495

    Article  CAS  Google Scholar 

  161. Hejgaard J (1978) ‘Free’ and ‘bound’ beta -amylases during malting of barley. Characterization by two-dimensional immunoelectrophoresis. J Inst Brew 84(1):43–46

    CAS  Google Scholar 

  162. Dahl SW et al (1996) Heterologous expression of three plant serpins with distinct inhibitory specificities. J Biol Chem 271(41):25083–25088

    Article  CAS  Google Scholar 

  163. Dahl SW et al (1996) Inhibition of coagulation factors by recombinant barley serpin BSZx. FEBS Lett 394(2):165–168

    Article  CAS  Google Scholar 

  164. Jegou S et al (2001) Evidence of the glycation and denaturation of LTP1 during the malting and brewing process. J Agric Food Chem 49(10):4942–4949

    Article  CAS  Google Scholar 

  165. Dale CJ, Young TW (1988) Fractionation of high molecular weight polypeptides from beer using two dimensional gel electrophoresis. J Inst Brew 94(1):28–32

    CAS  Google Scholar 

  166. Esslinger HM (ed) (2009) Handbook of brewing: processes. Technology, Markets

    Google Scholar 

  167. Back W (2005) Ausgewählte Kapitel der Brauereitechnologie, vol 1. Fachverlag Hans Carl GmbH, Nürnberg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Steiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, E., Gastl, M. & Becker, T. Protein changes during malting and brewing with focus on haze and foam formation: a review. Eur Food Res Technol 232, 191–204 (2011). https://doi.org/10.1007/s00217-010-1412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1412-6

Keywords

Navigation