Skip to main content
Log in

Quality of Norway lobster (Nephrops norwegicus) treated with a 4-hexylresorcinol-based formulation

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In the present work, the effect on biochemical indexes and microbial growth was studied in Norway lobster (Nephrops norwegicus), using a formulation containing 4-hexylresorcinol (0.1 and 0.05%) in combination with organic acids (citric, ascorbic and acetic) and chelating agents (ethylenediaminetetraacetic acid [EDTA] and di-sodium di-hydrogen pyrophosphate [PPi]). Lobsters treated with 4% of a commercial formula based on sulphites were used for control purposes. The treatment with 4-hexylresorcinol-based formulations delayed the increase in K-value and total volatile bases, while evolution of pH and trimethylamine was similar regardless of the treatment. No relation was found between biochemical and microbiological indexes. Regarding microflora, although commercial sulphites slightly slowed the growth of seafood spoiler organisms, as Shewanella putrefaciens and luminescent colonies, these organisms were not found in a very high number (∼6 log cfu/g) at the end of storage. Moreover, the formulation containing 4-hexylresorcinol 0.1% appeared to stimulate the growth of lactic acid bacteria. The sensory quality of lobster, in terms of melanosis, remained with a good appearance for 12 days. Formulations based on 4-hexylresorcinol preserved the quality and could therefore replace the traditional sulphites during storage of Norway lobster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Taylor SL, Bush RK (1986) Food Technol 40:47–52

    Google Scholar 

  2. McEvily AJ, Iyengar R, Otwell S (1991) Food Technol Sept.:80–86

    Google Scholar 

  3. Tanaka N, Luker C (1978) Abstract of the Annual Meeting of the American Society for Microbiology 78:188

    Google Scholar 

  4. Pyle ML, Koburger JA (1984) J Food Prot 47(5):375–377

    CAS  Google Scholar 

  5. Paleari MA, Beretta G, Cattaneo P, Balzaretti C (1985) Ind Aliment 24(226):371–375

    Google Scholar 

  6. Han JH (2000) Food Technol 54(3):56–65

    Google Scholar 

  7. Chang IS, Kim BH, Shin PK (1997) Appl Environ Microbiol 63(1):1–6

    CAS  Google Scholar 

  8. Doyle MP, Marth EH (1978) J Food Prot 41:891–896

    CAS  Google Scholar 

  9. López-Caballero ME, Pérez-Mateos M, Borderías JA, Montero P (2000) J Food Prot 63(10):1381–1388

    Google Scholar 

  10. Martínez-Alvarez O, Gómez-Guillén MC, Montero P (2005) J Food Prot 68(1):103–110

    Google Scholar 

  11. Montero P, Ávalos A, Pérez-Mateos M (2002) Food Chem 75:317–324

    Article  Google Scholar 

  12. Montero P, Gómez-Guillén MC, Zamorano P, Martínez-Álvarez O (2003). In: Junta de Andalucia (ed) Estudios de los agentes conservantes e inhibidores de la melanosis en crustáceos. Consejería de Agricultura y Pesca, Spain

    Google Scholar 

  13. Montero P, López-Caballero ME, Pérez-Mateos M (2001) J Food Sci 66(8):1201–1206

    Article  CAS  Google Scholar 

  14. Montero P, Martínez-Alvarez O, Gómez-Guillén MC (2004) J Food Sci 68(8):643–647

    Article  Google Scholar 

  15. Saito T, Arai K, Matsuyoshi M (1959) Bull Jpn Soc Sci Fish 24:749–750

    CAS  Google Scholar 

  16. Antonacopoulos and Vyncke (1989) Zeit Lebens U Forsch 189:309–316

    Article  Google Scholar 

  17. AOAC (1995) Trimethylamine nitrogen in seafood 971.14. Colorimetric methods (35.1.17). In: AOAC Official Method of Analyses, Chapter 35.7

  18. Ritchie AH (1991) Techn Rep Torry Research Station. Aberdeen, Scotland

  19. Ruíz-Capillas C, Morales J, Moral A (2003) Eur Food Res Technol 217:466–470

    Article  CAS  Google Scholar 

  20. Layrisse ME, Matches JR (1984) J Food Prot 47:453–457

    CAS  Google Scholar 

  21. Ogawa M, Meneses ACB, Perdigao NB, Kozima TT (1983) Bull Suis Gakkai-Shi 49(6):975–982

    Google Scholar 

  22. Mendes R, Quinta R, Nunes ML (2001) Eur Food Res Technol 212:141–146

    Article  CAS  Google Scholar 

  23. Yamanaka H, Shimada R (1996) Fish Sci 62:821–824

    CAS  Google Scholar 

  24. Shimada R, Ushio H, Yamanaka H (2000) Fish Sci 66:755–760

    Article  CAS  Google Scholar 

  25. Fatima R, Qadri RB (1985) J Agric Food Chem 33:117–122

    Article  CAS  Google Scholar 

  26. Ho M-L, Cheng H-H, Jiang S-T (1986) Bull Jpn Soc Sci Fish 52:479–488

    CAS  Google Scholar 

  27. Iyengar JR, Visweswariah K, Moorjani MN, Bhatia DS (1960) J Fish Res Bd Canada 17:475–485

    Google Scholar 

  28. Matches JR (1982) J Food Sci 47:1044–1047, 1069

    Article  Google Scholar 

  29. Mendes R, Huidobro A, López-Caballero ME (2002) Eur Food Res Technol 214:125–130

    Article  CAS  Google Scholar 

  30. Vanderzant C, Cobb BF, Thompson CA Jr, Parker JC (1973) J Milk Food Technol 36:443–446

    CAS  Google Scholar 

  31. Mietz JL, Karmas E (1977) J Food Sci 42:155–158

    Article  CAS  Google Scholar 

  32. Huidobro A, López-Caballero ME, Mendes R (2002) Eur Food Res Technol 214:469–475

    Article  CAS  Google Scholar 

  33. López-Caballero ME, Gonçalves A, Nunes L (2002) Eur Food Res Technol 214:192–197

    Article  CAS  Google Scholar 

  34. Chinivasagam HN, Bremner HA, Reeves R (1998) L Appl Microbiol 27:5–8

    Article  Google Scholar 

  35. Karmas E (1981) Lebesn Wiss U Technol 14(5):273–275

    CAS  Google Scholar 

  36. Zuberi R, Fatima R, Qadri RB (1988) Pak J Sci Ind Res 31(11):768–773

    Google Scholar 

  37. Gram L, Huss HH (1996) Int J Food Microbiol 33:121–137

    Article  CAS  Google Scholar 

  38. Chinivasagam HN, Bremner HA, Thrower SJ, Nottingham SM (1996) J Aquat Food Prod Technol 5:25–50

    Article  Google Scholar 

  39. López-Caballero ME, Álvarez MD, Sánchez-Fernández JA, Moral A (2002) Eur Food Res Technol 215:390–395

    Article  CAS  Google Scholar 

  40. Pascual MR (1992) Mariscos (Crustáceos y Moluscos). In: Pascual MR (eds) Microbiología alimentaria. Diaz de Santos, Madrid, Spain, pp 183–195

    Google Scholar 

  41. Finne G (1982) Enzymatic ammonia production in penaeid shrimp help on ice. In: Martin RE, Flick GJ, Hebard CE, Ward DR (eds) Chemistry and biochemistry of marine food products. Wesport, USA, pp 323–331

  42. Sidhu GS, Montgomery WA, Brown MA (1974) J Food Technol 9(3):357–370

    Article  CAS  Google Scholar 

  43. Applewhite LD, Otwell WS, Rashan JM (1996) Inhibition of enzymatic browning in spiny lobsters by 4-hexylresorcinol. IFT Annual Meeting. Book of abstracts, p 79, ISSN 1082–1236

  44. Yamagata M, Low LK (1995) J Food Sci 60(4):721–726

    Article  CAS  Google Scholar 

  45. Nokodemusz I, Rodriguez EO, Almaguer MCBA, Ibarguren MF (1973) Elelmiszervizsgalati Koezlemenyek 19(5):257–260

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Consejería de Agricultura y Pesca de la Junta de Andalucía (Project CSIC-2000-664) and the European Union (Project CRUSTAMEL, FAIR-Life-CRAFT/001/1312) for co-financing the research. Author López-Caballero is under contract Ramón y Cajal, MEC-CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elvira López-Caballero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Caballero, M.E., Martínez-Álvarez, Ó., Gómez-Guillén, M.C. et al. Quality of Norway lobster (Nephrops norwegicus) treated with a 4-hexylresorcinol-based formulation. Eur Food Res Technol 222, 425–431 (2006). https://doi.org/10.1007/s00217-005-0125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0125-8

Keywords

Navigation