Skip to main content
Log in

Determination of aldehydes in tequila by high-performance liquid chromatography with 2,4-dinitrophenylhydrazine derivatization

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this work, the determination of aldehydes in different tequila brands was carried out by high-performance liquid chromatography after derivatization with 2,4-dinitrophenylhydrazine. For the comparative purposes, two commercial brandies were also analyzed. The derivatization agent (50 μl of 3.5 mmol l−1 DNPH in HCl, 2 mol l−1) was added directly to the sample (500 μl) and dinitrophenylhydrazones formed were extracted with hexane. After evaporation of the solvent in nitrogen stream, the residues were dissolved in 100 μl of acetonitrile. The calibration standards were prepared from respective dinitrophenylhydrazones, following the same procedure as for beverage samples. Reversed phase chromatographic separation was achieved on Luna C18 column (250 mm×4.6 mm, 5 μm), using gradient elution (acetonitrile:water, from 68 to 80% of acetonitrile in 20 min) and a total flow rate 1 ml min−1. Spectrophotometric detection for furanic aldehydes was at 390 nm (for other aldehydes at 365 nm). The assignation of chromatographic peaks was accomplished by comparison of their relative retention times and UV/Vis spectra with those of external standards. The method of standard addition was also used. The aldehydes identified were 5-hydroxymethylfurfuraldehyde (t ret=4.1 min), formaldehyde (t ret=5.1 min), syringaldehyde (t ret=5.6 min), acetaldehyde (t ret=6.2 min), 2-furaldehyde (t ret=7.2 min) and 5-methylfurfuraldehyde (t ret=8.9 min). At least four chromatographic peaks with retention times higher than 12 min remained unidentified. The quantification results showed drastically higher concentrations of 2-furaldehyde and 5-methylfuraldehyde in tequilas as referred to brandies. Furthermore, 100% tequilas contained higher levels of these two compounds (for four brands analyzed, mean values 18.6 and 5.97 μg ml−1, respectively) as compared to the mixed brands (five brands analyzed, mean values 6.46 and 3.30 μg ml−1). The results obtained confirm that the profile of furanic aldehydes depends on the type of fructans contained in the raw material and also on heating treatment applied or not prior to fermentation. In contrast to other polysaccharides, inulin hydrolyzes at elevated temperature and the contribution of Maillard browning reactions increases the production of furanic compounds. Our results indicate that the levels of 2-furaldehyde and 5-methylfuraldehyde could be used for discrimination between 100% and mixed tequila brands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rodriguez Madrera R, Blanco Gomis D, Mangas Alonso JJ (2003) J Agric Food Chem 51:7969–7973

    Article  PubMed  CAS  Google Scholar 

  2. Barroso CG, Rodríguez MC, Guillen DA, Perez-Bustamante JA (1996) J Chromatogr A 724:125–129

    Article  CAS  Google Scholar 

  3. Canas S, Belchior AP, Spranger MI, Bruno-de-Sousa R (2003) J Sep Sci 26:496–502

    Article  CAS  Google Scholar 

  4. Nascimento RF, Marques JC, Lima Neto BS, De Keukeleire D, Franco DW (1997) J Chromatogr 782:13–23

    Article  CAS  Google Scholar 

  5. Quesada-Granados J, Villalon-Mir M, Lopez-Garcia-Serrana H, Lopez-Martinez MC (1995) Food Chem 52:203–208

    Article  Google Scholar 

  6. Amdur OM, Doull J, Klaassen D (1991) Casarett and Doull's toxicology – the basic science of poison. New York, Mac Millan

    Google Scholar 

  7. Bauer-Chriostoph C, Christoph N, Aguilar-Cisneros BO, Lopez MG, Richling E, Rosmmann A, Schreider P (2003) Eur Food Res Technol 217:438–443

    Article  CAS  Google Scholar 

  8. Panossian A, Mamikonyan G, Torosyan M, Gabrielyan E, Mkhitaryan S (2001) Anal Chem 73:4379–4383

    Article  PubMed  CAS  Google Scholar 

  9. Mangas J, Rodriguez R, Moreno J, Suarez B, Blanco D (1996) J Agric Food Chem 44:3303–3307

    Article  CAS  Google Scholar 

  10. Mangas JJ, Rodriguez R, Moreno J, Suarez B, Blanco D (1997) J Agric Food Chem 45:4076–4079

    Article  CAS  Google Scholar 

  11. Canas S, Leandro CM, Spranger MI, Belchior AP (1999) J Agric Food Chem 47:5023–5030

    Article  PubMed  CAS  Google Scholar 

  12. Cadahia E, Fernandez de Simon B, Jalocha J (2003) J Agric Food Chem 51:5923–5932

    Article  PubMed  CAS  Google Scholar 

  13. Quesada-Granados J, Villalon-Mir M, Lopez Serrana H, Lopez Martinez MC (1996) Food Chem 56:415–419

    Article  Google Scholar 

  14. Aguilar-Cisneros BO, Lopez MG, Richling E, Heckel F, Schreier P (2002) J Agric Food Chem 50:7520–7523

    Article  PubMed  CAS  Google Scholar 

  15. Cedeno M (1995) Crit Rev Biotechnol 15:1–11

    Article  PubMed  CAS  Google Scholar 

  16. Mancilla-Margalli NA, Lopez MG (2002) J Agric Food Chem 50:806–812

    Article  PubMed  CAS  Google Scholar 

  17. Antal MJ Jr, Mok WS, Richards GN (1990) Carbohydr Res 199:91–109

    Article  PubMed  CAS  Google Scholar 

  18. Norma Oficial Mexicana NOM,-006-SCFI-1994, Bebidas alcohólicas – Tequila – Especificaciones

  19. Matejicek D, Klejdus B, Mikes O, Sterbova D, Kuban V (2003) Anal Bioanal Chem 377:340–345

    Article  PubMed  CAS  Google Scholar 

  20. Blanco-Gomis D, Gutierrez-Alvarez MD, Sopena-Naredo L, Mangas-Alonso JJ (1991) Chromatographia 32:45–48

    Article  CAS  Google Scholar 

  21. Albala-Hurtado S, Veciana-Nogues MT, Izquierdo-Pulido M, Vidal-Carou MC (1997) J Agric Food Chem 45:2128–2133

    Article  CAS  Google Scholar 

  22. Kiridena W, Poole SK, Poole CF (1994) J Planar Chromatogr Mod TLC 7:273–277

    CAS  Google Scholar 

  23. Risner CH, Martin P (1994) J Chromatogr Sci 32:76–82

    PubMed  CAS  Google Scholar 

  24. Takeda S, Wakida S, Yamane M, Higashi K (1994) Electrophoresis 15:1332–1334

    Article  CAS  Google Scholar 

  25. Branderberger RH, Branderberger H (1993) In: Blau K, Halket J (eds) Handbook of derivatives for chromatography. Wiley, Chichester, pp 131–40

    Google Scholar 

  26. Munoz Rogriguez D, Wrobel K, Wrobel K (2005) Chem Anal (Warsaw) (in press)

  27. Lehtonen PJ, Keller LA, Ali-Matilla ET (1999) Z Lebensm Unters Fosch A 208:413–417

    Article  CAS  Google Scholar 

  28. Alonso-Salces RM, Guyot S, Herrero C, Berrueta LA, Drilleau JF, Gallo B, Vicente F (2004) Anal Bioanal Chem 379:464–475

    Article  PubMed  CAS  Google Scholar 

  29. de Costa RS, Santos SRB, Almeida LF, Nascimento RF, Pontes MJC, Lima RAC, Simoes SS, Araujo MCU (2004) Microchem J 78:27–33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimierz Wrobel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, D.M., Wrobel, K. & Wrobel, K. Determination of aldehydes in tequila by high-performance liquid chromatography with 2,4-dinitrophenylhydrazine derivatization. Eur Food Res Technol 221, 798–802 (2005). https://doi.org/10.1007/s00217-005-0038-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0038-6

Keywords

Navigation