Skip to main content
Log in

Improved single-step enrichment methods of cross-linked products for protein structure analysis and protein interaction mapping

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chemical cross-linking/mass spectrometry (MS) is gradually developing into a routine method to investigate protein conformation and to decipher protein interaction networks. To increase identification rates of the frequently low abundant cross-linked products in LC/MS/MS experiments, fast and reliable sample preparation protocols are indispensable. We present simplified solid phase extraction methods using C18/SCX StageTips and mixed-mode OASIS MCX cartridges for a single-step enrichment of cross-linked products prior to LC/MS/MS analysis. Our improved protocols result in 3.5 to 4.6 times higher numbers of cross-link identifications for the model protein bovine serum albumin compared to non-processed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BS3 :

Bis(sulfosuccinimidyl)suberate

BSA:

Bovine serum albumin

CID:

Collision-induced dissociation

ESI:

Electrospray ionization

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HPLC:

High-performance liquid chromatography

LC:

Liquid chromatography

LTQ:

Linear ion trap (Thermo Fisher Scientific)

MCX:

Mixed mode cation exchange (Waters)

MeOH:

Methanol

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

RP:

Reversed phase

SCX:

Strong cation exchange chromatography

SEC:

Size exclusion chromatography

SPE:

Solid phase extraction

TFA:

Trifluoroacetic acid

References

  1. Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom Rev. 2006;25:663–82.

    Article  CAS  Google Scholar 

  2. Rappsilber J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol. 2011;173:530–40.

    Article  CAS  Google Scholar 

  3. Holding AN. XL-MS: protein cross-linking coupled with mass spectrometry. Methods. 2015;89:54–63.

    Article  CAS  Google Scholar 

  4. Arlt C, Ihling CH, Sinz A. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Proteomics. 2015;15:2746–55.

    Article  CAS  Google Scholar 

  5. Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: a fruitful combination for structural biology. Protein Sci. 2015;24:1193–209.

    Article  CAS  Google Scholar 

  6. Yang B, Wu Y-J, Zhu M, Fan S-B, Lin J, Zhang K, et al. Identification of cross-linked peptides from complex samples. Nat Methods. 2012;9:904–6.

    Article  CAS  Google Scholar 

  7. Hoopmann MR, Zelter A, Johnson RS, Riffle M, MacCoss MJ, Davis TN, et al. Kojak: efficient analysis of chemically cross-linked protein complexes. J Proteome Res. 2015;14:2190–8.

    Article  CAS  Google Scholar 

  8. Liu F, Rijkers DTS, Post H, Heck AJR. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods. 2015;12:1179–84.

    Article  CAS  Google Scholar 

  9. Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, et al. StavroX—a software for analyzing crosslinked products in protein interaction studies. J Am Soc Mass Spectrom. 2012;23:76–87.

    Article  Google Scholar 

  10. Götze M, Pettelkau J, Fritzsche R, Ihling CH, Schäfer M, Sinz A. Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J Am Soc Mass Spectrom. 2015;26:83–97.1.

    Article  Google Scholar 

  11. Kalkhof S, Ihling C, Mechtler K, Sinz A. Chemical cross-linking and high-performance Fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: application to a calmodulin/target peptide complex. Anal Chem. 2005;77:495–503.

    Article  CAS  Google Scholar 

  12. Pearson KM, Pannell LK, Fales HM. Intramolecular cross-linking experiments on cytochrome C and ribonuclease A using an isotope multiplet method. Rapid Commun Mass Spectrom. 2002;16:149–59.

    Article  CAS  Google Scholar 

  13. Müller DR, Schindler P, Towbin H, Wirth U, Voshol H, Hoving S, et al. Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal Chem. 2001;73:1927–34.

    Article  Google Scholar 

  14. Arlt C, Götze M, Ihling CH, Hage C, Schäfer M, Sinz A. Integrated workflow for structural proteomics studies based on cross-linking/mass spectrometry with an MS/MS cleavable cross-linker. Anal Chem. 2016;88:7930–7.

    Article  CAS  Google Scholar 

  15. Vellucci D, Kao A, Kaake RM, Rychnovsky SD, Huang L. Selective enrichment and identification of azide-tagged cross-linked peptides using chemical ligation and mass spectrometry. J Am Soc Mass Spectrom. 2010;21:1432–45.

    Article  CAS  Google Scholar 

  16. Tan D, Li Q, Zhang M-J, Liu C, Ma C, Zhang P, Ding Y-H, Fan S-B, Tao L, Yang B, Li X, Ma S, Liu J, Feng B, Liu X, Wang H-W, He S-M, Gao N, Ye K, Dong M-Q, Lei X. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states. Elife. 2016;5.

  17. Chu F, Mahrus S, Craik CS, Burlingame AL. Isotope-coded and affinity-tagged cross-linking (ICATXL): an efficient strategy to probe protein interaction surfaces. J Am Chem Soc. 2006;128:10362–3.

    Article  CAS  Google Scholar 

  18. Kang S, Mou L, Lanman J, Velu S, Brouillette WJ, Prevelige PE. Synthesis of biotin-tagged chemical cross-linkers and their applications for mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:1719–26.

    Article  CAS  Google Scholar 

  19. Back JW, de Jong L, Muijsers AO, de Koster CG. Chemical cross-linking and mass spectrometry for protein structural modeling. J Mol Biol. 2003;331:303–13.

    Article  CAS  Google Scholar 

  20. Fritzsche R, Ihling CH, Götze M, Sinz A. Optimizing the enrichment of cross-linked products for mass spectrometric protein analysis. Rapid Commun Mass Spectrom. 2012;26:653–8.

    Article  CAS  Google Scholar 

  21. Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, et al. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J. 2010;29:717–26.

    Article  CAS  Google Scholar 

  22. Rinner O, Seebacher J, Walzthoeni T, Mueller LN, Beck M, Schmidt A, et al. Identification of cross-linked peptides from large sequence databases. Nat Methods. 2008;5:315–8.

    Article  CAS  Google Scholar 

  23. Leitner A, Reischl R, Walzthoeni T, Herzog F, Bohn S, Förster F, Aebersold R. Expanding the chemical cross-linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography. Mol Cell Proteomics. 2012;11:M111.014126.

  24. Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–906.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AS is supported by the DFG (project Si 867/15-2) and the region of Saxony Anhalt. The authors are indebted to Mr. Thomas Piotrowski for constructing the SPE apparatus (ESM, Fig. S12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sinz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, R., Sinz, A. Improved single-step enrichment methods of cross-linked products for protein structure analysis and protein interaction mapping. Anal Bioanal Chem 409, 2393–2400 (2017). https://doi.org/10.1007/s00216-017-0185-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0185-1

Keywords

Navigation