Skip to main content
Log in

Chloroform induces outstanding crystallization of poly(hydroxybutyrate) (PHB) vesicles within bacteria

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Poly[(R)-3-hydroxyalkanoate]s or PHAs are aliphatic polyesters produced by numerous microorganisms. They are accumulated as energy and carbon reserve in the form of small intracellular vesicles. Poly[(R)-3-hydroxybutyrate] (PHB) is the most ubiquitous and simplest PHA. An atomic force microscope coupled with a tunable infrared laser (AFM-IR) was used to record highly spatially resolved infrared spectra of commercial purified PHB and native PHB within bacteria. For the first time, the crystallinity degree of native PHB within vesicle has been directly evaluated in situ without alteration due to the measure or extraction and purification steps of the polymer: native PHB is in crystalline state at 15% whereas crystallinity degree reaches 57% in commercial PHB. Chloroform addition on native PHB induces crystallization of the polymer within bacteria up to 60%. This possibility of probing and changing the physical state of polymer in situ could open alternative ways of production for PHB and others biopolymers.

An atomic force microscope coupled with a tunable infrared laser (AFM-IR) has been used to record local infrared spectra of biopolymer PHB within bacteria. Deconvolution of those spectra has allowed to determine in situ the crystallinity degree of native PHB

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nigmatullin R, Thomas P, Lukasiewicz B, Puthussery H, Roy I. Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol. 2015;90:1209–21.

    Article  CAS  Google Scholar 

  2. Chen GQ, Hajnal I, Wu H, Lv L, Ye J. Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol. 2015;33:565–74.

    Article  CAS  Google Scholar 

  3. Lemoigne M. Produits de déshydration et de polymérisation de l’acide ß-oxobutyrique. Bull Soc Chim Biol. 1926;8:770–82.

    CAS  Google Scholar 

  4. Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6:1–8.

    Article  CAS  Google Scholar 

  5. Luengo JM, Garcıa B, Sandoval A, Naharro G, Olivera ER. Bioplastics from microorganisms. Curr Opin Microbiol. 2003;6:251–60.

    Article  CAS  Google Scholar 

  6. Thomson N, Summers D, Sivaniah E. Synthesis, properties and uses of bacterial storage lipid granules as naturally occurring nanoparticles. Soft Matter. 2010;6:4045–57.

    Article  CAS  Google Scholar 

  7. Steinbüchel A, Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett. 1995;128:219–28.

    Article  Google Scholar 

  8. Noda I, Green PR, Satkowski MM, Schechtman LA. Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules. 2005;6:580–6.

    Article  CAS  Google Scholar 

  9. Barnard GN, Sanders JKM. Observation of mobile poly(β-hydroxybutyrate) in the storage granules of Methylobacterium AM1 by in vivo 13C-NMR spectroscopy. FEBS Lett. 1988;231:16–8.

  10. Barnard GN, Sanders JKM. The poly-β-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J Biol Chem. 1989;264:3286–91.

  11. Kawaguchi Y, Doi Y. Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray diffraction. FEMS Microbiol Lett. 1990;70:151–5.

  12. de Koning GJM, Lemstra PJ. The amorphous state of bacterial poly[(R)-3-hydroxyalkanoate] in vivo. Polymer. 1992;33:3292–4.

  13. Barham PJ. Nucleation behavior of poly-3-hydroxybutyrate. J Mater Sci. 1984;19:3826–34.

    Article  CAS  Google Scholar 

  14. Horowitz DM, Sanders JKM. Amorphous, biomimetic granules of polyhydroxybutyrate: preparation, characterization, and biological implications. J Am Chem Soc. 1994;116:2695–702.

  15. Bourbonnais R, Marchessault RH. Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules. 2010;11:989–93.

    Article  CAS  Google Scholar 

  16. Lauzier C, Marchessault RH, Smith P, Chanzy H. Structural study of isolated poly(β-hydroxybutyrate) granules. Polymer. 1992;33:823–7.

  17. Dazzi A, Prazeres R, Glotin F, Ortega JM. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett. 2005;30:2388–90.

    Article  CAS  Google Scholar 

  18. Mayet C, Dazzi A, Prazeres R, Ortega JM, Jaillard D. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst. 2010;135:2540–5.

    Article  CAS  Google Scholar 

  19. Dazzi A, Prater CB, Hu Q, Chase DB, Rabolt JF, Marcott C. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl Spectrosc. 2012;66:1365–84.

    Article  CAS  Google Scholar 

  20. Deniset-Besseau A, Prater CB, Virolle MJ, Dazzi A. Monitoring TriAcylGlycerols accumulation by atomic force microscopy based infrared spectroscopy in Streptomyces species for biodiesel applications. J Phys Chem Lett. 2014;5:654–8.

    Article  CAS  Google Scholar 

  21. Dazzi A, Glotin F, Carminati R. Theory of infrared nanospectroscopy by photothermal induced resonance. J Appl Phys. 2010;107:124519.

    Article  Google Scholar 

  22. Xu J, Guo BH, Yang R, Wu Q, Chen GQ, Zhang ZM. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer. 2002;43:6893–9.

    Article  CAS  Google Scholar 

  23. Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y. Surface melting and crystallization behavior of polyhydroxyalkanoates studied by attenuated total reflection infrared spectroscopy. Polymer. 2004;45:6547–54.

    Article  CAS  Google Scholar 

  24. Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y. Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2005;61:541–50.

    Article  Google Scholar 

  25. Sato H, Dybal J, Murakami R, Noda I, Ozaki Y. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H–O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J Mol Struct. 2005;744–747:35–46.

    Article  Google Scholar 

  26. Chaijamrus S, Udpuay N. Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agricultural Engineering International: the CIGR Ejournal. 2008;10:Manuscript FP 07 030.

  27. Hahn SK, Chang YK, Lee SY. Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl Environ Microbiol. 1995;61:34–9.

    CAS  Google Scholar 

  28. Porter MM, Yu J. Crystallization kinetics of poly(3-hydroxybutyrate) granules in different environmental conditions. J Biomater Nanobiotechnol. 2011;2:301–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Digital Surf team for their help and for supporting us with MountainsMap software which was used to post-process each nanoIR image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Onidas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebois, R., Onidas, D., Marcott, C. et al. Chloroform induces outstanding crystallization of poly(hydroxybutyrate) (PHB) vesicles within bacteria. Anal Bioanal Chem 409, 2353–2361 (2017). https://doi.org/10.1007/s00216-017-0181-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0181-5

Keywords

Navigation