Skip to main content

Advertisement

Log in

Quantitative twoplex glycan analysis using 12C6 and 13C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available 12/13C6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for 12C6 ‘light’ and 13C6 ‘heavy’ 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50. doi:10.1146/annurev.immunol.25.022106.141702.

    Article  CAS  Google Scholar 

  2. Bard F, Chia J. Cracking the glycome encoder: signaling, trafficking, and glycosylation. Trends Cell Biol. 2016. doi:10.1016/j.tcb.2015.12.004.

    Google Scholar 

  3. Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J. 2015. doi:10.1007/s10719-015-9626-2.

    Google Scholar 

  4. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13(7):448–62. doi:10.1038/nrm3383.

    Article  CAS  Google Scholar 

  5. Marino K, Bones J, Kattla JJ, Rudd PM. A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol. 2010;6(10):713–23. doi:10.1038/nchembio.437.

    Article  CAS  Google Scholar 

  6. Suzuki S. Recent developments in liquid chromatography and capillary electrophoresis for the analysis of glycoprotein glycans. Anal Sci. 2013;29(12):1117–28.

    Article  CAS  Google Scholar 

  7. Mittermayr S, Bones J, Doherty M, Guttman A, Rudd PM. Multiplexed analytical glycomics: rapid and confident IgG N-glycan structural elucidation. J Proteome Res. 2011;10(8):3820–9. doi:10.1021/pr200371s.

    Article  CAS  Google Scholar 

  8. Mittermayr S, Bones J, Guttman A. Unraveling the glyco-puzzle: glycan structure identification by capillary electrophoresis. Anal Chem. 2013;85(9):4228–38. doi:10.1021/ac4006099.

    Article  CAS  Google Scholar 

  9. Zaia J. Capillary electrophoresis-mass spectrometry of carbohydrates. Methods Mol Biol. 2013;984:13–25. doi:10.1007/978-1-62703-296-4_2.

    Article  CAS  Google Scholar 

  10. Kamoda S, Ishikawa R, Kakehi K. Capillary electrophoresis with laser-induced fluorescence detection for detailed studies on N-linked oligosaccharide profile of therapeutic recombinant monoclonal antibodies. J Chromatogr A. 2006;1133(1–2):332–9. doi:10.1016/j.chroma.2006.08.028.

    Article  CAS  Google Scholar 

  11. Sato K, Sato K, Okubo A, Yamazaki S. Separation of 2-aminobenzoic acid-derivatized glycosaminoglycans and asparagine-linked glycans by capillary electrophoresis. Anal Sci. 2005;21(1):21–4.

    Article  CAS  Google Scholar 

  12. Millan Martin S, Delporte C, Farrell A, Navas Iglesias N, McLoughlin N, Bones J. Comparative analysis of monoclonal antibody N-glycosylation using stable isotope labelling and UPLC-fluorescence-MS. Analyst. 2015;140(5):1442–7.

    Article  CAS  Google Scholar 

  13. Prien JM, Prater BD, Qin Q, Cockrill SL. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics. Anal Chem. 2010;82(4):1498–508. doi:10.1021/ac902617t.

    Article  CAS  Google Scholar 

  14. Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H. Quantitative glycomics strategies. Mol Cell Proteomics MCP. 2013;12(4):874–84. doi:10.1074/mcp.R112.026310.

    Article  CAS  Google Scholar 

  15. Zaia J. Mass spectrometry and the emerging field of glycomics. Chem Biol. 2008;15(9):881–92. doi:10.1016/j.chembiol.2008.07.016.

    Article  CAS  Google Scholar 

  16. Zhou S, Tello N, Harvey A, Boyes B, Orlando R, Mechref Y. Reliable LC-MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards. Electrophoresis. 2016;37(11):1489–97. doi:10.1002/elps.201600013.

    Article  CAS  Google Scholar 

  17. Lu H, Zhang Y, Yang P. Advancements in mass-spectrometry-based glycoproteomics and glycomics. Natl Sci Rev. 2016. doi:10.1093/nsr/nww019.

    Google Scholar 

  18. Atwood 3rd JA, Cheng L, Alvarez-Manilla G, Warren NL, York WS, Orlando R. Quantitation by isobaric labeling: applications to glycomics. J Proteome Res. 2008;7(1):367–74. doi:10.1021/pr070476i.

    Article  CAS  Google Scholar 

  19. Gimenez E, Sanz-Nebot V, Rizzi A. Relative quantitation of glycosylation variants by stable isotope labeling of enzymatically released N-glycans using [12C]/[13C] aniline and ZIC-HILIC-ESI-TOF-MS. Anal Bioanal Chem. 2013;405(23):7307–19. doi:10.1007/s00216-013-7178-5.

    Article  CAS  Google Scholar 

  20. Walker SH, Taylor AD, Muddiman DC. Individuality normalization when labeling with isotopic glycan hydrazide tags (INLIGHT): a novel glycan-relative quantification strategy. J Am Soc Mass Spectrom. 2013;24(9):1376–84. doi:10.1007/s13361-013-0681-2.

    Article  CAS  Google Scholar 

  21. Xia B, Feasley CL, Sachdev GP, Smith DF, Cummings RD. Glycan reductive isotope labeling for quantitative glycomics. Anal Biochem. 2009;387(2):162–70. doi:10.1016/j.ab.2009.01.028.

    Article  CAS  Google Scholar 

  22. Alley Jr WR, Novotny MV. Structural glycomic analyses at high sensitivity: a decade of progress. Annu Rev Anal Chem (Palo Alto, Calif). 2013;6:237–65. doi:10.1146/annurev-anchem-062012-092609.

    Article  CAS  Google Scholar 

  23. Suzuki H, Muller O, Guttman A, Karger BL. Analysis of 1-aminopyrene-3,6,8-trisulfonate-derivatized oligosaccharides by capillary electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 1997;69(22):4554–9.

    Article  CAS  Google Scholar 

  24. Gennaro LA, Salas-Solano O. On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem. 2008;80(10):3838–45. doi:10.1021/ac800152h.

    Article  CAS  Google Scholar 

  25. Zhong X, Chen Z, Snovida S, Liu Y, Rogers JC, Li L. Capillary electrophoresis-electrospray ionization-mass spectrometry for quantitative analysis of glycans labeled with multiplex carbonyl-reactive tandem mass tags. Anal Chem. 2015;87(13):6527–34. doi:10.1021/acs.analchem.5b01835.

    Article  CAS  Google Scholar 

  26. Zhou S, Hu Y, Veillon L, Snovida SI, Rogers JC, Saba J, et al. Quantitative LC–MS/MS glycomic analysis of biological samples using AminoxyTMT. Anal Chem. 2016;88(15):7515–22. doi:10.1021/acs.analchem.6b00465.

    Article  CAS  Google Scholar 

  27. Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM. “Internal residue loss”: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem. 2002;74(4):734–40.

    Article  CAS  Google Scholar 

  28. Wuhrer M, Deelder AM, van der Burgt YE. Mass spectrometric glycan rearrangements. Mass Spectrom Rev. 2011;30(4):664–80. doi:10.1002/mas.20337.

    Article  CAS  Google Scholar 

  29. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res. 2008;7(4):1650–9. doi:10.1021/pr7008252.

    Article  CAS  Google Scholar 

  30. Harvey DJ, Merry AH, Royle L, Campbell MP, Dwek RA, Rudd PM. Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics. 2009;9(15):3796–801. doi:10.1002/pmic.200900096.

    Article  CAS  Google Scholar 

  31. Jayo RG, Thaysen-Andersen M, Lindenburg PW, Haselberg R, Hankemeier T, Ramautar R, et al. Simple capillary electrophoresis–mass spectrometry method for complex glycan analysis using a flow-through microvial interface. Anal Chem. 2014;86(13):6479–86. doi:10.1021/ac5010212.

    Article  CAS  Google Scholar 

  32. Bunz SC, Rapp E, Neususs C. Capillary electrophoresis/mass spectrometry of APTS-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal Chem. 2013;85(21):10218–24. doi:10.1021/ac401930j.

    Article  CAS  Google Scholar 

  33. Zapala L, Kalembkiewicz J, Sitarz-Palczak E. Studies on equilibrium of anthranilic acid in aqueous solutions and in two-phase systems: aromatic solvent-water. Biophys Chem. 2009;140(1–3):91–8. doi:10.1016/j.bpc.2008.11.012.

    Article  CAS  Google Scholar 

  34. Zapała L, Woźnicka E, Kalembkiewicz J. Tautomeric and microscopic protonation equilibria of anthranilic acid and its derivatives. J Solut Chem. 2014;43(6):1167–83. doi:10.1007/s10953-014-0190-3.

    Article  Google Scholar 

  35. Harvey DJ. Collision-induced fragmentation of negative ions from N-linked glycans derivatized with 2-aminobenzoic acid. J Mass Spectrom. 2005;40(5):642–53. doi:10.1002/jms.836.

    Article  CAS  Google Scholar 

  36. Lammerts van Bueren JJ, Rispens T, Verploegen S, van der Palen-Merkus T, Stapel S, Workman LJ, et al. Anti-galactose-alpha-1,3-galactose IgE from allergic patients does not bind alpha-galactosylated glycans on intact therapeutic antibody Fc domains. Nat Biotechnol. 2011;29(7):574–6. doi:10.1038/nbt.1912.

    Article  CAS  Google Scholar 

  37. Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5(4):397–409. doi:10.1007/bf01049915.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from EU Framework Programme 7 under Marie Curie Actions, grants reference: FP7-PEOPLE-2013-ITN-608381 and FP7-PEOPLE-2012-ITN-316929, and Science Foundation Ireland, grant reference 11/SIRG/B107. Prof. Natalia Navas Iglesias from the Department of Analytical Chemistry at the University of Granada, Spain, is kindly acknowledged for the provision of the Cetuximab samples analysed in this study. Agilent Technologies are also kindly acknowledged for the generous provision of the 6520 QToF-MS and PVA capillaries used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Bones.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Fundamental Aspects of Electromigrative Separation Techniques with guest editors Carolin Huhn and Pablo A. Kler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Váradi, C., Mittermayr, S., Millán-Martín, S. et al. Quantitative twoplex glycan analysis using 12C6 and 13C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry. Anal Bioanal Chem 408, 8691–8700 (2016). https://doi.org/10.1007/s00216-016-9935-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9935-8

Keywords

Navigation