Skip to main content
Log in

Volume determination of irregularly-shaped quasi-spherical nanoparticles

  • Rapid Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are widely used in diverse application areas, such as medicine, engineering, and cosmetics. The size (or volume) of NPs is one of the most important parameters for their successful application. It is relatively straightforward to determine the volume of regular NPs such as spheres and cubes from a one-dimensional or two-dimensional measurement. However, due to the three-dimensional nature of NPs, it is challenging to determine the proper physical size of many types of regularly and irregularly-shaped quasi-spherical NPs at high-throughput using a single tool. Here, we present a relatively simple method that determines a better volume estimate of NPs by combining measurements from their top-down projection areas and peak heights using two tools. The proposed method is significantly faster and more economical than the electron tomography method. We demonstrate the improved accuracy of the combined method over scanning electron microscopy (SEM) or atomic force microscopy (AFM) alone by using modeling, simulations, and measurements. This study also exposes the existence of inherent measurement biases for both SEM and AFM, which usually produce larger measured diameters with SEM than with AFM. However, in some cases SEM measured diameters appear to have less error compared to AFM measured diameters, especially for widely used IS-NPs such as of gold, and silver. The method provides a much needed, proper high-throughput volumetric measurement method useful for many applications.

The combined method for volume determination of irregularly-shaped quasi-spherical nanoparticles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G, et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res. 2013;15(12).

  2. Roco MC. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J Nanopart Res. 2011;13(2):427–45.

    Article  Google Scholar 

  3. Delvallee A, Feltin N, Ducourtieux S, Trabelsi M, Hochepied JF. Direct comparison of AFM and SEM measurements on the same set of nanoparticles. Meas Sci Technol. 2015;26(8).

  4. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  CAS  Google Scholar 

  5. Ko SH, Vargas-Lara F, Patrone PN, Stavis SM, Starr FW, Douglas JF, et al. High-speed, high-purity separation of gold nanoparticle-DNA origami constructs using centrifugation. Soft Matter. 2014;10(37):7370–8.

    Article  CAS  Google Scholar 

  6. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, et al. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr Biol-Uk. 2013;5(1):66–73.

    Article  CAS  Google Scholar 

  7. Fadeel B, Fornara A, Toprak MS, Bhattacharya K. Keeping it real: the importance of material characterization in nanotoxicology. Biochem Biophys Res Commun. 2015.

  8. Krug HF. Nanosafety research-are we on the right track? Angew Chem Int Ed. 2014;53(46):12304–19.

    CAS  Google Scholar 

  9. Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, et al. Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater. 2009;21(16):1549–59.

    Article  CAS  Google Scholar 

  10. Schrurs F, Lison D. Focusing the research efforts. Nat Nanotechnol. 2012;7(9):546–8.

    Article  CAS  Google Scholar 

  11. Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5(7):846–53.

    Article  CAS  Google Scholar 

  12. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 2007;95(2):300–12.

    Article  CAS  Google Scholar 

  13. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.

    Article  CAS  Google Scholar 

  14. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  Google Scholar 

  15. Linsinger TPJ, Roebben G, Solans C, Ramsch R. Reference materials for measuring the size of nanoparticles. TrAC Trend Anal Chem. 2011;30(1):18–27.

    Article  CAS  Google Scholar 

  16. Reich ES. Nano rules fall foul of data gap. Nature. 2011;480(7376):160–1.

    Article  Google Scholar 

  17. Join the dialogue. Nat Nanotechnol. 2012;7(9):545.

  18. Meli F, Klein T, Buhr E, Frase CG, Gleber G, Krumrey M, et al. Traceable size determination of nanoparticles, a comparison among European metrology institutes. Meas Sci Technol. 2012;23(12).

  19. Wang CY, Fu WE, Lin HL, Peng GS. Preliminary study on nanoparticle sizes under the APEC technology cooperative framework. Meas Sci Technol. 2007;18(2):487–95.

    Article  Google Scholar 

  20. Motzkus C, Mace T, Gaie-Levrel F, Ducourtieux S, Delvallee A, Dirscherl K, et al. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. J Nanopart Res. 2013;15(10).

  21. MacCuspie RI, Rogers K, Patra M, Suo ZY, Allen AJ, Martin MN, et al. Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions. J Environ Monit. 2011;13(5):1212–26.

    Article  CAS  Google Scholar 

  22. Coleman VA, Jamting AK, Catchpoole HJ, Roy M, Herrmann J. Nanoparticles and metrology: a comparison of methods for the determination of particle size distributions. Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors V. 2011;8105.

  23. Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–110.

    Article  CAS  Google Scholar 

  24. Thomas JM, Midgley PA, Ducati C, Leary RK. Nanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: a short surveyNanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: a short surveyretain–&gt. Prog Nat Sci Mater Int. 2013;23(3):222–34.

    Article  Google Scholar 

  25. Midgley PA, Ward EPW, Hungria AB, Thomas JM. Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev. 2007;36(9):1477–94.

    Article  CAS  Google Scholar 

  26. Hayashida M, Kumagai K, Malac M. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography. Micron. 2015;79:53–8.

    Article  CAS  Google Scholar 

  27. Migunov V, Ryll H, Zhuge X, Simson M, Strüder L, Batenburg KJ, et al. Rapid low dose electron tomography using a direct electron detection camera. Sci Rep-Uk. 2015;5:14516.

    Article  CAS  Google Scholar 

  28. Van Doren EAF, De Temmerman PJRH, Francisco MAD, Mast J. Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. J Nanobiotechnol. 2011;9.

  29. Vladar A. Measuring the size of colloidal gold nano-particles using high-resolution scanning electron microscopy. National Institute of Standards and Technology, DOC; 2011.

  30. Grobelny J, DelRio FW, Pradeep N, Kim DI, Hackley VA, Cook RF. Size measurement of nanoparticles using atomic force microscopy. Methods Mol Biol (Clifton, NJ). 2011;697:71–82.

    Article  CAS  Google Scholar 

  31. Mulholland GW, Donnelly MK, Hagwood CR, Kukuck SR, Hackley VA, Pui DYH. Measurement of 100 nm and 60 nm particle standards by differential mobility analysis. J Res Natl Inst Stand Technol. 2006;111(4):257–312.

    Article  Google Scholar 

  32. Malysheva A, Lombi E, Voelcker NH. Bridging the divide between human and environmental nanotoxicology. Nat Nanotechnol. 2015;10(10):835–44.

    Article  CAS  Google Scholar 

  33. Montano MD, Lowry GV, von der Kammer F, Blue J, Ranville JF. Current status and future direction for examining engineered nanoparticles in natural systems. Environ Chem. 2014;11(4):351–66.

    Article  CAS  Google Scholar 

  34. Attota R, Kavuri PP, Kang H, Kasica R, Chen L. Nanoparticle size determination using optical microscopes. Appl Phys Lett. 2014;105(16).

  35. Kang H, Attota R, Tondare V, Vladár AE, Kavuri P. A method to determine the number of nanoparticles in a cluster using conventional optical microscopes. Appl Phys Lett. 2015;107(10):103106.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank John Kramar for the useful discussions, Andras Vladar for providing high-quality SEM images of Au nanoparticles used in Ref. [29], and the Summer Undergraduate Research Fellowship (SURF) program of NIST and NSF for providing an internship to Eileen Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kiran Attota.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 922 kb)

(MOV 1388 kb)

(MOV 2580 kb)

(MOV 2555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attota, R.K., Liu, E.C. Volume determination of irregularly-shaped quasi-spherical nanoparticles. Anal Bioanal Chem 408, 7897–7903 (2016). https://doi.org/10.1007/s00216-016-9909-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9909-x

Keywords

Navigation