Skip to main content
Log in

Quantitative aspects of microchip isotachophoresis for high precision determination of main components in pharmaceuticals

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although microchip electrophoresis (MCE) is intended to provide reliable quantitative data, so far there is only limited attention paid to these important aspects. This study gives a general overview of key aspects to be followed to reach high-precise determination using isotachophoresis (ITP) on the microchip with conductivity detection. From the application point of view, the procedure for the determination of acetate, a main component in the pharmaceutical preparation buserelin acetate, was developed. Our results document that run-to-run fluctuations in the sample injection volume limit the reproducibility of quantitation based on the external calibration. The use of a suitable internal standard (succinate in this study) improved the repeatability of the precision of acetate determination from six to eight times. The robustness of the procedure was studied in terms of impact of fluctuations in various experimental parameters (driving current, concentration of the leading ions, pH of the leading electrolyte and buffer impurities) on the precision of the ITP determination. The use of computer simulation programs provided means to assess the ITP experiments using well-defined theoretical models. A long-term validity of the calibration curves on two microchips and two MCE equipments was verified. This favors ITP over other microchip electrophoresis techniques, when chip-to-chip or equipment-to-equipment transfer of the analytical method is required. The recovery values in the range of 98–101 % indicate very accurate determination of acetate in buserelin acetate, which is used in the treatment of hormone-dependent tumors. This study showed that microchip ITP is suitable for reliable determination of main components in pharmaceutical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Orr JD, Krull IS, Swartz ME. Validation of impurity methods, part I. LC GC North America. 2003;21(7):626-33

  2. Liu X, Tracy M, Pohl C. A platform method for pharmaceutical counterion analysis by HPLC. Poster Note 20948 from HPLC 2014. http://www.thermoscientific.com/content/dam/tfs/ATG/CMD/CMD%20Documents/posters/PN-20948-Pharmaceutical-Counterion-Analysis-HPLC-2014-PN20948-EN.pdf. Assessed 15 Apr 2016.

  3. Paulekuhn GS, Dressman JB, Saal C. Trends in active pharmaceutical ingredient salt selection based on analysis of the orange book database. J Med Chem. 2007;50(26):6665–72.

    Article  CAS  Google Scholar 

  4. Štěpánová S, Kašička V. Determination of impurities and counterions of pharmaceuticals by capillary electromigration methods. J Sep Sci. 2014;37(15):2039–55.

    Article  Google Scholar 

  5. Kler PA, Sydes D, Huhn C. Column-coupling strategies for multidimensional electrophoretic separation techniques. Anal Bioanal Chem. 2015;407(1):119–38.

    Article  CAS  Google Scholar 

  6. Suntornsuk L. Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal Bioanal Chem. 2010;398(1):29–52.

    Article  CAS  Google Scholar 

  7. Tamizi E, Jouyban A. The potential of the capillary electrophoresis techniques for quality control of biopharmaceuticals—a review. Electrophoresis. 2015;36(6):831–58.

    Article  CAS  Google Scholar 

  8. Manz A, Harrison DJ, Verpoorte EMJ, Fettinger J, Paulus A, Lüdi H, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip. J Chromatogr A. 1992;593(1-2):253–8.

    Article  CAS  Google Scholar 

  9. Castro ER, Manz A. Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A. 2015;1382:66–85.

    Article  CAS  Google Scholar 

  10. Nuchtavorn N, Suntornsuk W, Lunte SM, Suntornsuk L. Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal. 2015;113:72–96.

    Article  CAS  Google Scholar 

  11. Ou G, Feng X, Du W, Liu X, Liu BF. Recent advances in microchip electrophoresis for amino acid analysis. Anal Bioanal Chem. 2013;405(25):7907–18.

    Article  CAS  Google Scholar 

  12. Tetala KKR, Vijayalakshmi MA. A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Anal Chim Acta. 2016;906:7–21.

    Article  CAS  Google Scholar 

  13. Chen L, Prest JE, Fielden PR, Goddard NJ, Manz A, Day PJR. Miniaturised isotachophoresis analysis. Lab Chip Miniaturisation Chem Biol. 2006;6(4):474–87.

    Article  CAS  Google Scholar 

  14. Revermann T, Götz S, Künnemeyer J, Karst U. Quantitative analysis by microchip capillary electrophoresis—current limitations and problem-solving strategies. Analyst. 2008;133(2):167–74.

    Article  CAS  Google Scholar 

  15. Bidulock ACE, van den Berg A, Eijkel JCT. Improving chip-to-chip precision in disposable microchip capillary electrophoresis devices with internal standards. Electrophoresis. 2015;36(6):875–83.

    Article  CAS  Google Scholar 

  16. Rudašová M, Masár M. Precise determination of N-acetylcysteine in pharmaceuticals by microchip electrophoresis. J Sep Sci. 2016;39(2):433–9.

    Article  Google Scholar 

  17. Westermeier R. Isotachophoresis. In: Electrophoresis in practice: a guide to methods and applications of DNA and protein separations (4th edition). Weinheim: Wiley-VCH; 2016. pp. 45-9

  18. Sádecká J, Masár M. Electrophoresis | capillary isotachophoresis. In: Reedijk J, editor. Elsevier reference module in chemistry, molecular sciences and chemical engineering. Waltham: Elsevier; 2014. p. 1–9.

    Google Scholar 

  19. Boček P. Analytical isotachophoresis. In: Analytical problems (Topics in Current Chemistry 95). Berlin: Springer; 1981. p. 131–77.

    Google Scholar 

  20. Gebauer P, Malá Z, Boček P. Recent progress in analytical capillary ITP. Electrophoresis. 2009;30(1):29–35.

    Article  CAS  Google Scholar 

  21. Millar RP, Lu ZL, Pawson AJ, Flanagan CA, Morgan K, Maudsley SR. Gonadotropin-releasing hormone receptors. Endocr Rev. 2004;25(2):235–75.

    Article  CAS  Google Scholar 

  22. Limonta P, Marelli MM, Mai S, Motta M, Martini L, Moretti RM. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev. 2012;33(5):784–811.

    Article  CAS  Google Scholar 

  23. Sanz-Nebot V, Benavente F, Toro I, Barbosa J. Evaluation of chromatographic versus electrophoretic behaviour of a series of therapeutical peptide hormones. J Chromatogr A. 2003;985(1-2):411–23.

    Article  CAS  Google Scholar 

  24. Lodén H, Amini A. Quantification of buserelin in a pharmaceutical product by multiple-injection CZE. Electrophoresis. 2007;28(10):1548–56.

    Article  Google Scholar 

  25. Staňová A, Marák J, Rezeli M, Páger C, Kilár F, Kaniansky D. Analysis of therapeutic peptides in human urine by combination of capillary zone electrophoresis-electrospray mass spectrometry with preparative capillary isotachophoresis sample pretreatment. J Chromatogr A. 2011;1218(48):8701–7.

    Article  Google Scholar 

  26. Staňová A, Marák J, Maier V, Ranc V, Znaleziona J, Ševčík J, et al. Analysis of buserelin in urine by online combination of capillary zone electrophoresis with electrospray mass spectrometry. Electrophoresis. 2010;31(7):1234–40.

    Article  Google Scholar 

  27. Sanz-Nebot V, Benavente F, Balaguer E, Barbosa J. Capillary electrophoresis coupled to time of flight-mass spectrometry of therapeutic peptide hormones. Electrophoresis. 2003;24(5):883–91.

    Article  CAS  Google Scholar 

  28. Wätzig H, Degenhardt M. Characterisation of buserelin acetate by capillary electrophoresis. J Chromatogr A. 1998;817(1-2):239–52.

    Article  Google Scholar 

  29. Wiliams RC, Boucher R, Brown J, Scull JR, Walker J, Paolini D. Analysis of acetate counter ion and inorganic impurities in pharmaceutical drug substances by capillary ion electrophoresis with conductivity detection. J Pharm Biomed Anal. 1997;16(3):469–79.

    Article  CAS  Google Scholar 

  30. Zhou L, Dovletoglou A. Practical capillary electrophoresis method for the quantitation of the acetate counter-ion in a novel antifungal lipopeptide. J Chromatogr A. 1997;763(1-2):279–84.

    Article  CAS  Google Scholar 

  31. Ridge S, Hettiarachchi K. Peptide purity and counter ion determination of bradykinin by high-performance liquid chromatography and capillary electrophoresis. J Chromatogr A. 1998;817(1-2):215–22.

    Article  CAS  Google Scholar 

  32. Sázelová P, Kašička V, Šolínová V, Koval D. Determination of purity degree and counter-ion content in lecirelin by capillary zone electrophoresis and capillary isotachophoresis. J Chromatogr B Anal Technol Biomed Life Sci. 2006;841(1-2):145–51.

    Article  Google Scholar 

  33. Kaniansky D, Masár M, Bielčíková J. Electroosmotic flow suppressing additives for capillary zone electrophoresis in a hydrodynamically closed separation system. J Chromatogr A. 1997;792(1-2):483–94.

    Article  CAS  Google Scholar 

  34. Kaniansky D, Masár M, Bodor R, Žúborová M, Ölvecká M, Jöhnck M, et al. Electrophoretic separations on chips with hydrodynamically closed separation systems. Electrophoresis. 2003;24(12-13):2208–27.

    Article  CAS  Google Scholar 

  35. Hruška V, Jaroš M, Gaš B. Simul 5—free dynamic simulator of electrophoresis. Electrophoresis. 2006;27(5-6):984–91.

    Article  Google Scholar 

  36. Hirokawa T, Nishino M, Aoki N, Kiso Y, Sawamoto Y, Yagi T, et al. Table of isotachophoretic indices. I. Simulated qualitative and quantitative indices of 287 anionic substances in the range ph 3-10. J Chromatogr A. 1983;271(2):D1–106.

    Article  CAS  Google Scholar 

  37. Grass B, Neyer A, Johnck M, Siepe D, Eisenbeiss F, Weber G, et al. A new PMMA-microchip device for isotachophoresis with integrated conductivity detector. Sensors Actuat B-Chem. 2001;72(3):249–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the financial support of the Slovak Research and Development Agency (APVV-0259–12), and the Slovak Grant Agency for Science (VEGA 1/0340/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Masár.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Additional information

Published in the topical collection Fundamental Aspects of Electromigrative Separation Techniques with guest editors Carolin Huhn and Pablo A. Kler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hradski, J., Chorváthová, M.D., Bodor, R. et al. Quantitative aspects of microchip isotachophoresis for high precision determination of main components in pharmaceuticals. Anal Bioanal Chem 408, 8669–8679 (2016). https://doi.org/10.1007/s00216-016-9815-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9815-2

Keywords

Navigation