Skip to main content

Advertisement

Log in

Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical detection of solid-phase isothermal recombinase polymerase amplification (RPA) of Piscirickettsia salmonis in salmon genomic DNA is reported. The electrochemical biosensor was constructed by surface functionalization of gold electrodes with a thiolated forward primer specific to the genomic region of interest. Solid-phase RPA and primer elongation were achieved in the presence of the specific target sequence and biotinylated reverse primers. The formation of the subsequent surface-tethered duplex amplicons was electrochemically monitored via addition of streptavidin-linked HRP upon completion of solid-phase RPA. Successful quantitative amplification and detection were achieved in less than 1 h at 37 °C, calibrating with PCR-amplified genomic DNA standards and achieving a limit of detection of 5 · 10−8 μg ml−1 (3 · 103 copies in 10 μl). The presented system was applied to the analysis of eight real salmon samples, and the method was also compared to qPCR analysis, observing an excellent degree of correlation.

Schematic of use of electrochemical RPA for detection of Psiricketessia salmonis in salmon liver

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fryer JL et al. Piscirickettsia-salmonis gen-nov, sp-nov, the causative agent of an epizootic disease in salmonid fishes. Int J Syst Bacteriol. 1992;42(1):120–6.

    Article  CAS  Google Scholar 

  2. Mauel MJ, Ware C, Smith PA. Culture of Piscirickettsia salmonis on enriched blood agar. J Vet Diagn Investig. 2008;20(2):213–4.

    Article  Google Scholar 

  3. Mikalsen J et al. Agar culture of Piscirickettsia salmonis, a serious pathogen of farmed salmonid and marine fish. FEMS Microbiol Lett. 2008;278(1):43–7.

    Article  CAS  Google Scholar 

  4. Branson EJ, Diazmunoz DN. Description of a new disease condition occurring in farmed coho salmon, Oncorhynchus kisutch (Walbaum), in South America. J Fish Dis. 1991;14(2):147–56.

    Article  Google Scholar 

  5. Arkush KD et al. Genetic characterization and experimental pathogenesis of Piscirickettsia salmonis isolated from white seabass Atractoscion nobilis. Dis Aquat Org. 2005;63(2):139–49.

    Article  CAS  Google Scholar 

  6. Cvitanich J, Garate ON, Smith C. The isolation of a rickettsia‐like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J Fish Dis. 1991;14(2):121–45.

    Article  Google Scholar 

  7. Jones S et al. Virulence and antigenic characteristics of a cultured Rickettsiales-like organism isolated from farmed Atlantic salmon Salmo salar in eastern Canada. Dis Aquat Org. 1998;33(1):25.

    Article  CAS  Google Scholar 

  8. Rodger H, Drinan E. Observation of a rickettsia‐like organism in Atlantic salmon, Salmo salar L., in Ireland. J Fish Dis. 1993;16(4):361–9.

    Article  Google Scholar 

  9. Corbeil S, Hyatt AD, Crane MSJ. Characterisation of an emerging rickettsia-like organism in Tasmanian farmed Atlantic salmon Salmo salar. Dis Aquat Org. 2005;64(1):37–44.

    Article  CAS  Google Scholar 

  10. Olsen A et al. Piscirickettsia salmonis infection in Atlantic salmon Salmo salar in Norway—epidemiological, pathological and microbiological findings. Dis Aquat Org. 1997;31(1):35–48.

    Article  Google Scholar 

  11. Cabezas M. Fármacos naturales en el cultivo de Salmonídeos: una alternativa en el control de enfermedades. Salmociencia. 2006;1:27–33.

    Google Scholar 

  12. Rozas M, Enríquez R. Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. J Fish Dis. 2014;37(3):163–88.

    Article  CAS  Google Scholar 

  13. Marshall SH et al. Immunological characterization of a bacterial protein isolated from salmonid fish naturally infected with Piscirickettsia salmonis. Vaccine. 2007;25(11):2095–102.

    Article  CAS  Google Scholar 

  14. Kuzyk MA et al. An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. Vaccine. 2001;19(17):2337–44.

    Article  CAS  Google Scholar 

  15. Tobar JA et al. Oral vaccination of Atlantic salmon (Salmo salar) against salmonid rickettsial septicaemia. Vaccine. 2011;29(12):2336–40.

    Article  CAS  Google Scholar 

  16. Leal J, Woywood D. Piscirickettsiosis en Chile: Avances y perspectivas para su control. Salmociencia. 2007;2:34–42.

    Google Scholar 

  17. Fryer J et al. Isolation of a rickettsiales-like organism from diseased coho salmon (Oncorhynchus kisutch) in Chile. Fish Pathol. 1990;25(2):107–14.

    Article  Google Scholar 

  18. Mauel MJ, Miller DL. Piscirickettsiosis and piscirickettsiosis-like infections in fish: a review. Vet Microbiol. 2002;87(4):279–89.

    Article  Google Scholar 

  19. Fryer J, Hedrick R. Piscirickettsia salmonis: a Gram‐negative intracellular bacterial pathogen of fish. J Fish Dis. 2003;26(5):251–62.

    Article  CAS  Google Scholar 

  20. Lannan C, Ewing S, Fryer J. A fluorescent antibody test for detection of the rickettsia causing disease in Chilean salmonids. J Aquat Anim Health. 1991;3(4):229–34.

    Article  Google Scholar 

  21. Aguayo J et al. Detection of Piscirickettsia salmonis in fish tissues by an enzyme-linked immunosorbent assay using specific monoclonal antibodies. Dis Aquat Org. 2002;49(1):33–8.

    Article  CAS  Google Scholar 

  22. Mauel M, Giovannoni S, Fryer J. Development of polymerase chain reaction assays for detection, identification, and differentiation of Piscirickettsia salmonis. Dis Aquat Org. 1996;26(3):189–95.

    Article  CAS  Google Scholar 

  23. Corbeil S, McColl KA, Crane MSJ. Development of a TaqMan quantitative PCR assay for the identification of Piscirickettsia salmonis. Bull-Eur Assoc Fish Pathol. 2003;23(3):95–101.

    Google Scholar 

  24. Dettleff P et al. Patterns of Piscirickettsia salmonis load in susceptible and resistant families of Salmo salar. Fish Shellfish Immunol. 2015;45(1):67–71.

    Article  Google Scholar 

  25. Wu G, Zaman MH. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull World Health Organ. 2012;90(12):914–20.

    Article  Google Scholar 

  26. Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip. 2012;12(14):2469–86.

    Article  CAS  Google Scholar 

  27. Zanoli LM, Spoto G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors. 2013;3(1):18–43.

    Article  CAS  Google Scholar 

  28. Wu J et al. Extraction, amplification and detection of DNA inmicrofluidic chip-based assays. Microchim Acta. 2014;181(13–14):1611–31.

    Article  CAS  Google Scholar 

  29. Piepenburg O et al. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):1115–21.

    Article  CAS  Google Scholar 

  30. Loo JFC et al. An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening. Talanta. 2013;115:159–65.

    Article  CAS  Google Scholar 

  31. Silva G et al. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification. J Virol Methods. 2015;222:138–44.

    Article  CAS  Google Scholar 

  32. Abd El Wahed A et al. Recombinase polymerase amplification assay for rapid diagnostics of dengue infection. PLoS ONE. 2015;10(6):e0129682.

    Article  Google Scholar 

  33. Lillis L et al. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS ONE. 2014;9(9):e108189.

    Article  Google Scholar 

  34. Kersting S, et al. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J. 2014;13.

  35. TwistDX. Support information, FAQ. [cited 2015 8 August]; Available from: http://www.twistdx.co.uk/support/faqs/##1

  36. Snow M et al. Development, application and validation of a Taqman real-time RT-PCR assay for the detection of infectious salmon anaemia virus (ISAV) in Atlantic salmon (Salmo salar). Dev Biol (Basel). 2006;126:133–45. discussion 325–6.

    CAS  Google Scholar 

  37. Karatas S et al. Real time PCR detection of Piscirickettsia salmonis from formalin-fixed paraffin-embedded tissues. J Fish Dis. 2008;31(10):747–53.

    Article  CAS  Google Scholar 

  38. del Río JS et al. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron. 2014;54:674–8.

    Article  Google Scholar 

  39. Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids. 2008;27(3):224–43.

    Article  CAS  Google Scholar 

  40. Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350(6313):91–2.

    Article  CAS  Google Scholar 

  41. Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol. 2002;20(2):163–79.

    Article  CAS  Google Scholar 

  42. Tong Y, Lemieux B, Kong H. Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection. BMC Biotechnol. 2011;11(1):1–7.

    Article  Google Scholar 

  43. Fire A, Xu S-Q. Rolling replication of short DNA circles. Proc Natl Acad Sci USA. 1995;92.

  44. Landegren U et al. A ligase-mediated gene detection technique. Science. 1988;241(4869):1077–80.

    Article  CAS  Google Scholar 

  45. Notomi T et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63.

    Article  CAS  Google Scholar 

  46. Kimura Y et al. Optimization of turn-back primers in isothermal amplification. Nucleic Acids Res. 2011;39(9):e59.

    Article  CAS  Google Scholar 

  47. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16(3):223–9.

    Article  CAS  Google Scholar 

  48. Mori Y et al. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods. 2004;59(2):145–57.

    Article  CAS  Google Scholar 

  49. Poon LLM et al. Sensitive and inexpensive molecular test for falciparum malaria: detecting plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem. 2006;52(2):303–6.

    Article  CAS  Google Scholar 

  50. Wu Q et al. Integrated glass microdevice for nucleic acid purification, loop-mediated isothermal amplification, and online detection. Anal Chem. 2011;83(9):3336–42.

    Article  CAS  Google Scholar 

  51. James A, Macdonald J. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn. 2015;15(11):1475–89.

    Article  CAS  Google Scholar 

  52. Rosser A et al. Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasites Vectors. 2015;8:446.

    Article  CAS  Google Scholar 

  53. Jaroenram W, Owens L. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome. J Virol Methods. 2014;208:144–51.

    Article  CAS  Google Scholar 

  54. Kim JY, Lee J-L. Rapid detection of Salmonella Enterica serovar enteritidis from eggs and chicken meat by real-time recombinase polymerase amplification in comparison with the two-step real-time PCR. J Food Saf. 2016.

  55. Clancy E et al. Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood. BMC Infect Dis. 2015;15:481.

    Article  Google Scholar 

  56. Yehia N et al. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection. J Virol Methods. 2015;223:45–9.

    Article  CAS  Google Scholar 

  57. Santiago-Felipe S et al. Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc. Microchim Acta. 2016;183(3):1195–202.

    Article  CAS  Google Scholar 

  58. Kunze A et al. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Anal Chem. 2016;88(1):898–905.

    Article  CAS  Google Scholar 

  59. Santiago-Felipe S et al. One-pot isothermal DNA amplification—hybridisation and detection by a disc-based method. Sensors Actuators B Chem. 2014;204:273–81.

    Article  CAS  Google Scholar 

  60. Kersting S et al. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta. 2014;181(13–14):1715–23.

    Article  CAS  Google Scholar 

  61. Ortiz M et al. Bleed-to-read disposable microsystems for the genetic and serological analysis of celiac disease markers with amperometric detection. Electrophoresis. 2015;36(16):1920–6.

    Article  CAS  Google Scholar 

  62. Kellner C et al. Automated microsystem for electrochemical detection of cancer markers. Electrophoresis. 2011;32(8):926–30.

    Article  CAS  Google Scholar 

  63. Henry OY et al. Design and testing of a packaged microfluidic cell for the multiplexed electrochemical detection of cancer markers. Electrophoresis. 2009;30(19):3398–405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciara K. O’Sullivan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Published in the topical collection Isothermal Nucleic Acid Amplification in Bioanalysis with guest editor Maria Jesus Lobo Castañón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Río, J.S., Svobodova, M., Bustos, P. et al. Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification. Anal Bioanal Chem 408, 8611–8620 (2016). https://doi.org/10.1007/s00216-016-9639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9639-0

Keywords

Navigation