Skip to main content

Advertisement

Log in

Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoparticles functionalized with thiolated oligonucleotides (Au-nanoprobes) have been used in a range of applications for the detection of bioanalytes of interest, from ions to proteins and DNA targets. These detection strategies are based on the unique optical properties of gold nanoparticles, in particular, the intense color that is subject to modulation by modification of the medium dieletric. Au-nanoprobes have been applied for the detection and characterization of specific DNA sequences of interest, namely pathogens and disease biomarkers. Nevertheless, despite its relevance, only a few reports exist on the detection of RNA targets. Among these strategies, the colorimetric detection of DNA has been proven to work for several different targets in controlled samples but demonstration in real clinical bioanalysis has been elusive. Here, we used a colorimetric method based on Au-nanoprobes for the direct detection of the e14a2 BCR-ABL fusion transcript in myeloid leukemia patient samples without the need for retro-transcription. Au-nanoprobes directly assessed total RNA from 38 clinical samples, and results were validated against reverse transcription-nested polymerase chain reaction (RT-nested PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The colorimetric Au-nanoprobe assay is a simple yet reliable strategy to scrutinize myeloid leukemia patients at diagnosis and evaluate progression, with obvious advantages in terms of time and cost, particularly in low- to medium-income countries where molecular screening is not routinely feasible.

Gold nanoprobe for colorimetric detection of BCR-ABL1 fusion transcripts originating from the Philadelphia chromosome

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Larguinho M, Canto R, Cordeiro M, Pedrosa P, Fortuna A, Vinhas R, et al. Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics. Expert Rev Mol Diagn. 2015;15(10):1355–68.

    Article  CAS  Google Scholar 

  2. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, et al. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12(2):1657–87.

    Article  CAS  Google Scholar 

  3. Conde J, de la Fuente JM, Baptista PV. RNA quantification using gold nanoprobes—application to cancer diagnostics. J Nanobiotechnol. 2010;8:5.

    Article  Google Scholar 

  4. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  Google Scholar 

  5. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89(5):547–56.

    Article  CAS  Google Scholar 

  6. Hehlmann R, Hochhaus A, Baccarani M. Chronic myeloid leukaemia. Lancet. 2007;370(9584):342–50.

    Article  CAS  Google Scholar 

  7. Hughes TP, Hochhaus A, Branford S, Müller MC, Kaeda JS, Foroni L, et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the international randomized study of interferon versus STI571 (IRIS). Blood. 2010;116(19):3758–65.

    Article  CAS  Google Scholar 

  8. Tang M, Gonen M, Quintas-Cardama A, Cortes J, Kantarjian H, Field C, et al. Dynamics of chronic myeloid leukemia response to long-term targeted therapy reveal treatment effects on leukemic stem cells. Blood. 2011;118(6):1622–31.

    Article  CAS  Google Scholar 

  9. Stein AM, Bottino D, Modur V, Branford S, Kaeda J, Goldman JM, et al. BCR-ABL transcript dynamics support the hypothesis that leukemic stem cells are reduced during imatinib treatment. Clin Cancer Res. 2011;17(21):6812–21.

    Article  CAS  Google Scholar 

  10. Hehlmann R, Lauseker M, Jung-Munkwitz S, Leitner A, Müller MC, Pletsch N, et al. Tolerability adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-a in newly diagnosed chronic myeloid leukemia. J Clin Oncol. 2011;29(12):1634–42.

    Article  CAS  Google Scholar 

  11. Rowley JD. A new consistent chromosome abnormality in chronic myelogenous leukemia. Nature. 1973;243:290–3.

    Article  CAS  Google Scholar 

  12. Burmeister T, Schwartz S, Taubald A, Jost E, Lipp T, Schneller F, et al. Atypical BCR-ABL mRNA transcripts in adult acute lymphoblastic leukemia. Haematologica. 2007;92(12):1699–702.

    Article  CAS  Google Scholar 

  13. Keung YK, Beaty M, Powell BL, Molnar I, Buss D, Pettenati M. Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia—retrospective study and review of literature. Leuk Res. 2004;28(6):579–86.

    Article  CAS  Google Scholar 

  14. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukemia. Nature. 1985;315:550–4.

    Article  CAS  Google Scholar 

  15. Weerkamp F, Dekking E, Ng YY, Van der Velden VHJ, Wai H, Böttcher S, et al. Flow cytometric immunobead assay for the detection of BCR-ABL fusion proteins in leukemia patients. Leukemia. 2009;23(6):1106–17.

    Article  CAS  Google Scholar 

  16. Heisterkamp N, Groffen J. Philadelphia-positive leukemia: a personal perspective. Oncogene. 2002;21(56):8536–40.

    Article  CAS  Google Scholar 

  17. Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene. 2002;21(56):8652–67.

    Article  CAS  Google Scholar 

  18. Balatzenko G, Vundinti BR, Margarita G. Correlation between the type of bcr-abl transcripts and blood cell counts in chronic myeloid leukemia—a possible influence of mdr1 gene expression. Hematol Rep. 2011;3(1), e3.

    Article  Google Scholar 

  19. Kantarjian H, O’Brien S, Cortes J, Giles F, Thomas D, Kornblau S, et al. Sudden onset of the blastic phase of chronic myelogenous leukemia: patterns and implications. Cancer. 2003;98:81–5.

    Article  Google Scholar 

  20. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med. 1999;189(9):1399–412.

    Article  CAS  Google Scholar 

  21. Ou J, Vergilio JA, Bagg A. Molecular diagnosis and monitoring in the clinical management of patients with chronic myelogenous leukemia treated with tyrosine kinase inhibitors. Am J Hematol. 2008;83(4):296–302.

    Article  CAS  Google Scholar 

  22. Branford S, Hughes TP, Rudzki Z. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol. 1999;107(3):587–99.

    Article  CAS  Google Scholar 

  23. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84.

    Article  CAS  Google Scholar 

  24. Branford S, Fletcher L, Cross NC, Müller MC, Hochhaus A, Kim DW, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood. 2008;112(8):3330–8.

    Article  CAS  Google Scholar 

  25. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.

    Article  CAS  Google Scholar 

  26. Baccarani M, Castagnetti F, Gugliotta G, Rosti G. A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol. 2015;94(2):S141–7.

    Article  Google Scholar 

  27. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 concerted action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–28.

    Article  Google Scholar 

  28. Drexler HG. Malignant hematopoietic cell lines: in vitro models for the study of myelodysplastic syndromes. Leuk Res. 2000;24(2):109–15.

    Article  CAS  Google Scholar 

  29. Farmer P, Frenk J, Knaul FM, Shulman LN, Alleyne G, Armstrong L, et al. Expansion of cancer care and control in countries of low and middle income: a call to action. Lancet. 2010;376(9747):1186–93.

    Article  Google Scholar 

  30. CanTreat International. Scaling up cancer diagnosis and treatment in developing countries: what can we learn from the HIV/AIDS epidemic? Ann Oncol. 2010;21(4):680–2.

    Article  Google Scholar 

  31. Bansal S, Prabhash K, Parikh P. Chronic myeloid leukemia data from India. Indian J Med Paediatr Oncol. 2013;34(3):154.

    Article  Google Scholar 

  32. Tekinturhan E, Audureau E, Tavolacci MP, Garcia-Gonzalez P, Ladner J, Saba J. Improving access to care in low and middle-income countries: institutional factors related to enrollment and patient outcome in a cancer drug access program. BMC Health Serv Res. 2013;13(1):304.

    Article  Google Scholar 

  33. Garcia-Gonzalez P, Boultbee P, Epstein D 2015 Novel humanitarian aid program: the Glivec International Patient Assistance Program—lessons learned from providing access to breakthrough targeted oncology treatment in low- and middle-income countries. J Glob Oncol 000570

Download references

Acknowledgments

We acknowledge Fundação para a Ciência e a Tecnologia (FCT/MEC) for financial support (Project PTDC/BBB-NAN/1812/2012 and UCIBIO UID/Multi/04378/2013) and co-financed by ERDF under PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728), RV for SFRH/BD/52211/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro V. Baptista.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Patients were sent to the hematology department of the Hospital dos Capuchos (CHLC, Lisbon, Portugal) for leukemia diagnosis. Written informed consent was obtained from all participants and the study was approved by the Hospital dos Capuchos Ethics Committee. All approved ethical requirements for sample collection and assortment, processing, and analysis required by the Hospital dos Capuchos Ethics Committee have been strictly followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 69.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinhas, R., Correia, C., Ribeiro, P. et al. Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes. Anal Bioanal Chem 408, 5277–5284 (2016). https://doi.org/10.1007/s00216-016-9622-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9622-9

Keywords

Navigation