Skip to main content
Log in

Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstracts

Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benner R, Fogelt ML, Sprague EK, Hodson RE. Nature. 1987;329:708–10.

    Article  CAS  Google Scholar 

  2. Bertilsson S, Jones JB Jr. Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In Findlay SEG and Sinsabaugh RL (ed) Aquatic Ecosystems. Academic Press; 2003. pp 3–19.

  3. Leenheer JA, Nanny MA, Mcintyre C. Environ Sci Technol. 2003;37:2323–31.

    Article  CAS  Google Scholar 

  4. Carlson CA, Hansell DA. DOM sources, sinks, reactivity, and budgets. In: Carlson CA, editor. Hansell DA. Biogeochemistry of marine dissolved organic matter: Academic; 2014. p. 66–109.

    Google Scholar 

  5. Chen M, Jaffé R. Water Res. 2014;61:181–90.

    Article  CAS  Google Scholar 

  6. Hur J. Water Air Soil Pollut. 2011;215:465–76.

    Article  CAS  Google Scholar 

  7. Roth VN, Dittmar T, Gaupp R, Gleixner G Vadose Zone J.2014; 13.

  8. Maie N, Scully NM, Pisani O, Jaffé R. Water Res. 2007;41:563–70.

    Article  CAS  Google Scholar 

  9. Perminova IV, Dubinenkov IV, Kononikhin AS, Konstantinov AI, Zherebker AY, Andzhushev MA, et al. Environ Sci Technol. 2014;48:7461–8.

    Article  CAS  Google Scholar 

  10. Dittmar T, Koch BP, Hertkorn N, Kattner G. Limnol Oceanogr Methods. 2008;6:230–5.

    Article  CAS  Google Scholar 

  11. Kim S, Kramer RW, Hatcher PG. Anal Chem. 2003;75:5336–44.

    Article  CAS  Google Scholar 

  12. Sleighter RL, Hatcher PG. Mar Chem. 2008;110:140–52.

    Article  CAS  Google Scholar 

  13. Herzsprung P, Hertkorn N, Tümpling W, Harir M, Friese K, Schmitt-Kopplin P. Anal Bioanal Chem. 2016;408:2461–9.

    Article  CAS  Google Scholar 

  14. Li H, Minor EC. Environ Sci: Process Impacts. 2015;17:1829.

    CAS  Google Scholar 

  15. Tfaily MM, Chu RK, Tolic N, Roscioli KM, Anderton CR, Pasa-Tolic L, et al. Anal Chem. 2015;87:5206–15.

    Article  CAS  Google Scholar 

  16. Henderson RK, Baker A, Parsons SA, Jefferson B. Water Res. 2008;42:3435–45.

    Article  CAS  Google Scholar 

  17. Leloup M, Nicolau R, Pallier V, Yéprémian C, Feuillade-Cathalifaud G. J Environ Sci. 2013;25:1089–97.

    Article  CAS  Google Scholar 

  18. Nicolau R, Leloup M, Lachassagne D, Pinault E, Feuillade-Cathalifaud G. Talanta. 2015;136:102–7.

    Article  CAS  Google Scholar 

  19. Imai A, Fukushima T, Matsushige K, Hwan Kim Y. Water Res. 2001;35:4019–28.

    Article  CAS  Google Scholar 

  20. Hur J, Park M-H, Schlautman MA. Environ Sci Technol. 2009;43:2315–21.

    Article  CAS  Google Scholar 

  21. Flerus R, Koch BP, Schmitt-Kopplin P, Witt M, Kattner G. Mar Chem. 2011;124:100–7.

    Article  CAS  Google Scholar 

  22. McIntyre C, McRae C. Org Geochem. 2005;36:543–53.

    Article  CAS  Google Scholar 

  23. Rostad CE, Leenheer JA. Anal Chim Acta. 2004;523:269–78.

    Article  CAS  Google Scholar 

  24. Koch BP, Dittmar T, Witt M, Kattner G. Anal Chem. 2007;79:1758–63.

    Article  CAS  Google Scholar 

  25. Schaub TM, Rodgers RP, Marshall AG. Energy Fuels. 2005;19:1566–73.

    Article  CAS  Google Scholar 

  26. Koch BP, Dittmar T. Rapid Commun Mass Spectrom. 2006;20:926–32.

    Article  CAS  Google Scholar 

  27. Chen M, Price RM, Yamashita Y, Jaffe R. Appl Geochem. 2010;25:872–80.

    Article  Google Scholar 

  28. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT. Limnol Oceanogr. 2001;46:38–48.

    Article  CAS  Google Scholar 

  29. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E. Org Geochem. 2009;40:706–19.

    Article  CAS  Google Scholar 

  30. Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F. Chemosphere. 1999;38:45–50.

    Article  CAS  Google Scholar 

  31. Stedmon CA, Bro R. Limnol Oceanogr Methods. 2008;6:572–9.

    Article  CAS  Google Scholar 

  32. Ohno T, He Z, Sleighter RL, Honeycutt WC, Hatcher PG. Environ Sci Technol. 2010;44:8594–600.

    Article  CAS  Google Scholar 

  33. Gonsior M, Peake BM, Cooper WT, Podgorski DC, D’Andrilli J, Dittmar T, et al. Mar Chem. 2011;123:99–110.

    Article  CAS  Google Scholar 

  34. Bittar TB, Vieira AAH, Stubbins A, Mopper K. Limnol Oceanogr. 2015;60:1172–94.

    Article  CAS  Google Scholar 

  35. Kujawinski EB, Longnecker K, Blough NV, Del Vecchio R, Finlay L, Kitner JB, et al. Geochim Cosmochim Acta. 2009;73:4384–99.

    Article  CAS  Google Scholar 

  36. Chen M, Hur J. Water Res. 2015;79:10–25.

    Article  CAS  Google Scholar 

  37. Wagner S, Riedel T, Niggemann J, Vähätalo AV, Dittmar T, Jaffé R. Environ Sci Technol. 2015;49:13798–806.

    Article  CAS  Google Scholar 

  38. Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, et al. Geochim Cosmochim Acta. 2006;70:2990–3010.

    Article  CAS  Google Scholar 

  39. Hertkorn N, Harir M, Cawley KM, Schmitt-Kopplin P, Jaffé R. Biogeosci Discuss. 2015;12:13711–65.

    Article  Google Scholar 

  40. Pohlabeln AM, Dittmar T. Mar Chem. 2015;168:86–94.

    Article  CAS  Google Scholar 

  41. Stubbins A, Lapierre JF, Berggren M, Prairie YT, Dittmar T, del Giorgio PA. Environ Sci Technol. 2014;48:10598–606.

    Article  CAS  Google Scholar 

  42. Romera-Castillo C, Chen M, Yamashita Y, Jaffe R. Water Res. 2014;55:40–51.

    Article  CAS  Google Scholar 

  43. Kellerman AM, Kothawala DN, Dittmar T, Tranvik LJ. Nat Geosci. 2015;8:454–7.

    Article  CAS  Google Scholar 

  44. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. (2015) Vegan: Community ecology package R package version 23–0, https://cran.r-project.org/web/packages/vegan.

  45. Benner R, Kaiser K. Biogeochemistry. 2011;102:209–22.

    Article  CAS  Google Scholar 

  46. Singer GA, Fasching C, Wilhelm L, Niggemann J, Steier P, Dittmar T, et al. Nat Geosci. 2012;5:710–4.

    Article  CAS  Google Scholar 

  47. Stubbins A, Dittmar T. Mar Chem. 2015;177:318–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (no. 2014R1A2A2A09049496). Additional support was provided by R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (no. 2015001840002). We sincerely thank Mr. Heon-Jae Jung for help with lab and field works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Kim, S., Park, JE. et al. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups. Anal Bioanal Chem 408, 4809–4819 (2016). https://doi.org/10.1007/s00216-016-9569-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9569-x

Keywords

Navigation