Skip to main content

Advertisement

Log in

Highly sensitive glycosylamine labelling of O-glycans using non-reductive β-elimination

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

When developing biopharmaceuticals, glycans are the most important posttranslational protein modifications that must be addressed because they affect the between-protein interactions that maintain homeostasis. The glycan profile may be defined as a critical quality attribute of a biopharmaceutical. Comprehensive analysis of protein glycosylation must overcome challenges such as the release, labelling, separation and detection of O-glycans. In contrast, N-glycans can be readily released non-reductively from peptide backbones using an enzyme such as peptide N-glycosidase F. We developed a highly sensitive protocol using RapiFluor-MS to label glycosylamines for O-glycan analysis combined with a non-enzyme treatment for efficient release of the reduced O-glycans from the glycoproteins. Here we used the cytotoxic T lymphocyte associated protein 4-immunoglobulin G (Ig) fusion protein and fetuin as models for O-glycan analysis and compared the analytical methods glycopeptide mapping, 2-AB labelling and RapiFluor-MS labelling. The structures of major O-glycans and low-abundance O-glycans were successfully identified using the third technique, which detected the O-glycans with high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2-AB:

2-Aminobenzamide

CQA:

Critical quality attribute

CTLA4-Ig:

The cytotoxic T lymphocyte associated protein 4-immunoglobulin G fusion protein

DMF:

Dimethylformamide

HILIC:

Hydrophilic interaction liquid chromatography

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

PNGaseF:

Peptide N-glycosidase F

SPE:

Solid-phase extraction

References

  1. Zachara NE, Hart GW. The emerging significance of O-GlcNAc in cellular regulation. Chem Rev. 2002;102(2):431–8.

    Article  CAS  Google Scholar 

  2. Molinari M. N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol. 2007;3(6):313–20.

    Article  CAS  Google Scholar 

  3. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    Article  CAS  Google Scholar 

  4. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343(6166):1235681.

    Article  Google Scholar 

  5. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36.

    Article  CAS  Google Scholar 

  6. Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27(1):26–34.

    Article  CAS  Google Scholar 

  7. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9):936–49.

    Article  CAS  Google Scholar 

  8. Kawasaki N, Itoh S, Hashii N, Takakura D, Qin Y, Huang X, et al. The significance of glycosylation analysis in development of biopharmaceuticals. Biol Pharm Bull. 2009;32(5):796–800.

    Article  CAS  Google Scholar 

  9. Zhang P, Wang T, Bardor M, Song Z. Deciphering O-glycomics for the development and production of biopharmaceuticals. Pharm Bioprocess Future Sci Ltd London, UK. 2013;1(1):89–104.

    CAS  Google Scholar 

  10. Shahrokh Z, Royle L, Saldova R, Bones J, Abrahams JL, Artemenko NV, et al. Erythropoietin produced in a human cell line (Dynepo) has significant differences in glycosylation compared with erythropoietins produced in CHO cell lines. Mol Pharm Am Chem Soc. 2011;8(1):286–96.

    Article  CAS  Google Scholar 

  11. Endo T. New era of glycoscience: intrinsic and extrinsic functions performed by glycans. Foreword Biol Pharm Bull. 2009;32(5):765–6.

    Article  CAS  Google Scholar 

  12. Schiestl M, Stangler T, Torella C, Cepeljnik T, Toll H, Grau R. Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat Biotechnol. 2011;29(4):310–2. Nature Publishing Group, a division of Macmillan Publishers Limited All Rights Reserved.

    Article  CAS  Google Scholar 

  13. Jensen PH, Kolarich D, Packer NH. Mucin-type O-glycosylation—putting the pieces together. FEBS J. 2010;277(1):81–94.

    Article  CAS  Google Scholar 

  14. Zauner G, Kozak RP, Gardner RA, Fernandes DL, Deelder AM, Wuhrer M. Protein O-glycosylation analysis. Biol Chem. 2012;393(8):687–708.

    Article  CAS  Google Scholar 

  15. Carlson DM. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968;243(3):616–26.

    CAS  Google Scholar 

  16. Iyer RN, Carlson DM. Alkaline borohydride degradation of blood group H substance. Arch Biochem Biophys. 1971;142(1):101–5.

    Article  CAS  Google Scholar 

  17. Cooper CA, Packer NH, Redmond JW. The elimination of O-linked glycans from glycoproteins under non-reducing conditions. Glycoconj J. 1994;11(2):163–7.

    Article  CAS  Google Scholar 

  18. Koles K, van Berkel PHC, Pieper FR, Nuijens JH, Mannesse MLM, Vliegenthart JFG, et al. N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits. Glycobiology. 2004;14(1):51–64.

    Article  CAS  Google Scholar 

  19. Karlsson NG, Schulz BL, Packer NH. Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. J Am Soc Mass Spectrom. 2004;15(5):659–72.

    Article  CAS  Google Scholar 

  20. Cooke CL, An HJ, Kim J, Solnick JV, Lebrilla CB. Method for profiling mucin oligosaccharides from gastric biopsies of rhesus monkeys with and without Helicobacter pylori infection. Anal Chem Am Chem Soc. 2007;79(21):8090–7.

    Article  CAS  Google Scholar 

  21. Zaia J. Mass spectrometry and glycomics. OMICS. 2010;14(4):401–18.

    Article  CAS  Google Scholar 

  22. Stadheim TA, Li H, Kett W, Burnina IN, Gerngross TU. Use of high-performance anion exchange chromatography with pulsed amperometric detection for O-glycan determination in yeast. Nat Protoc Nature Publishing Group. 2008;3(6):1026–31.

    Article  CAS  Google Scholar 

  23. Yamada K, Hyodo S, Kinoshita M, Hayakawa T, Kakehi K. Hyphenated technique for releasing and MALDI MS analysis of O-glycans in mucin-type glycoprotein samples. Anal Chem Am Chem Soc. 2010;82(17):7436–43.

    Article  CAS  Google Scholar 

  24. Chai W, Feizi T, Yuen CT, Lawson AM. Nonreductive release of O-linked oligosaccharides from mucin glycoproteins for structure/function assignments as neoglycolipids: application in the detection of novel ligands for E-selectin. Glycobiology. 1997;7(6):861–72.

    Article  CAS  Google Scholar 

  25. Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Methods. 2016;13(6):528–34. Nature Publishing Group, a division of Macmillan Publishers Limited All Rights Reserved.

    Article  CAS  Google Scholar 

  26. Huang Y, Mechref Y, Novotny MV. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal Chem. 2001;73(24):6063–9.

    Article  CAS  Google Scholar 

  27. Patel T, Bruce J, Merry A, Bigge C, Wormald M, Jaques A, et al. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry. 1993;32(2):679–93.

    Article  CAS  Google Scholar 

  28. Merry AH, Neville DCA, Royle L, Matthews B, Harvey DJ, Dwek RA, et al. Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Anal Biochem. 2002;304(1):91–9.

    Article  CAS  Google Scholar 

  29. Turyan I, Hronowski X, Sosic Z, Lyubarskaya Y. Comparison of two approaches for quantitative O-linked glycan analysis used in characterization of recombinant proteins. Anal Biochem. 2014;446:28–36.

    Article  CAS  Google Scholar 

  30. Miura Y, Kato K, Takegawa Y, Kurogochi M, Furukawa JI, Shinohara Y, et al. Glycoblotting-assisted O-glycomics: ammonium carbamate allows for highly efficient O-glycan release from glycoproteins. Anal Chem. 2010;82(24):10021–9.

    Article  CAS  Google Scholar 

  31. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397(8):3457–81.

    Article  CAS  Google Scholar 

  32. Liu L, Tharmalingam T, Maischberger E, Albrecht S, Gallagher ME, Miranda-Casoluengo R, et al. A HPLC-based glycoanalytical protocol allows the use of natural O-glycans derived from glycoproteins as substrates for glycosidase discovery from microbial culture. Glycoconj J. 2013;30(8):791–800.

    Article  CAS  Google Scholar 

  33. Kozak RP, Royle L, Gardner RA, Fernandes DL, Wuhrer M. Suppression of peeling during the release of O-glycans by hydrazinolysis. Anal Biochem. 2012;423(1):119–28. Elsevier Inc.

    Article  CAS  Google Scholar 

  34. Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, et al. Rapid preparation of released N -glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem. 2015;87(10):5401–9.

    Article  CAS  Google Scholar 

  35. Bongers J, Devincentis J, Fu J, Huang P, Kirkley DH, Leister K, et al. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. J Chromatogr A. 2011;1218(45):8140–9.

    Article  CAS  Google Scholar 

  36. Windwarder M, Altmann F. Site-specific analysis of the O-glycosylation of bovine fetuin by electron-transfer dissociation mass spectrometry. J Proteomics. 2014;108:258–68. Elsevier B.V.

    Article  CAS  Google Scholar 

  37. Zhang Z. Large-scale identification and quantification of covalent modifications in therapeutic proteins. Anal Chem Am Chem Soc. 2009;81(20):8354–64.

    Article  CAS  Google Scholar 

  38. Bongers J, Cummings JJ, Ebert MB, Federici MM, Gledhill L, Gulati D, et al. Validation of a peptide mapping method for a therapeutic monoclonal antibody: what could we possibly learn about a method we have run 100 times? J Pharm Biomed Anal. 2000;21(6):1099–128.

    Article  CAS  Google Scholar 

  39. Dick LW, Mahon D, Qiu D, Cheng K-C. Peptide mapping of therapeutic monoclonal antibodies: improvements for increased speed and fewer artifacts. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(3):230–6.

    Article  CAS  Google Scholar 

  40. Ren D, Pipes GD, Liu D, Shih L-Y, Nichols AC, Treuheit MJ, et al. An improved trypsin digestion method minimizes digestion-induced modifications on proteins. Anal Biochem. 2009;392(1):12–21.

    Article  CAS  Google Scholar 

  41. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005;5(3):443–53.

    Article  CAS  Google Scholar 

  42. Davis PM, Abraham R, Xu L, Nadler SG, Suchard SJ. Abatacept binds to the Fc receptor CD64 but does not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. J Rheumatol. 2007;34(11):2204–10.

    CAS  Google Scholar 

  43. Vincenti F. Costimulation blockade in autoimmunity and transplantation. J Allergy Clin Immunol. 2008;121(2):299. -306-8.

    Article  CAS  Google Scholar 

  44. Latek R, Fleener C, Lamian V, Kulbokas E, Davis PM, Suchard SJ, et al. Assessment of belatacept-mediated costimulation blockade through evaluation of CD80/86-receptor saturation. Transplantation. 2009;87(6):926–33.

    Article  Google Scholar 

  45. Linsley PS, Nadler SG, Bajorath J, Peach R, Leung HT, Rogers J, et al. Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules. J Biol Chem. 1995;270(25):15417–24.

    Article  CAS  Google Scholar 

  46. Peach RJ, Bajorath J, Brady W, Leytze G, Greene J, Naemura J, et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med. 1994;180(6):2049–58.

    Article  CAS  Google Scholar 

  47. Zhu L, Guo Q, Guo H, Liu T, Zheng Y, Gu P, et al. Versatile characterization of glycosylation modification in CTLA4-Ig fusion proteins by liquid chromatography-mass spectrometry. MAbs. 2014;6(6):1474–85.

    Article  Google Scholar 

  48. Mori K, Emoto M, Inaba M. Fetuin-A: a multifunctional protein. Recent Pat Endocr Metab Immune Drug Discov. 2011;5(2):124–46.

    Article  CAS  Google Scholar 

  49. Yet MG, Chin CC, Wold F. The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin. J Biol Chem. 1988;263(1):111–7.

    CAS  Google Scholar 

  50. Edge AS, Spiro RG. Presence of an O-glycosidically linked hexasaccharide in fetuin. J Biol Chem. 1987;262(33):16135–41.

    CAS  Google Scholar 

  51. Yamada K, Hyodo S, Matsuno Y, Kinoshita M, Maruyama S, Osaka Y, et al. Rapid and sensitive analysis of mucin-type glycans using an in-line flow glycan-releasing apparatus. Anal Biochem. 2007;371(1):52–61.

    Article  CAS  Google Scholar 

  52. Wang C, Yuan J, Wang Z, Huang L. Separation of one-pot procedure released O-glycans as 1-phenyl-3-methyl-5-pyrazolone derivatives by hydrophilic interaction and reversed-phase liquid chromatography followed by identification using electrospray mass spectrometry and tandem mass spectromet. J Chromatogr A. 2013;1274:107–17.

    Article  CAS  Google Scholar 

  53. Mechref Y, Novotny MV. Mass spectrometric mapping and sequencing of N-linked oligosaccharides derived from submicrogram amounts of glycoproteins. Anal Chem. 1998;70(3):455–63.

    Article  CAS  Google Scholar 

  54. Darula Z, Medzihradszky KF. Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol Cell Proteomics. 2009;8(11):2515–26.

    Article  CAS  Google Scholar 

  55. Borisov OV, Field M, Ling VT, Harris RJ. Characterization of oligosaccharides in recombinant tissue plasminogen activator produced in Chinese hamster ovary cells: two decades of analytical technology development. Anal Chem. 2009;81(23):9744–54.

    Article  CAS  Google Scholar 

  56. Ferrige AG, Seddon MJ, Jarvis S, Skilling J, Aplin R. Maximum entropy deconvolution in electrospray mass spectrometry. Rapid Commun Mass Spectrom. 1991;5(8):374–7.

    Article  CAS  Google Scholar 

  57. Ferrige AG, Seddon MJ, Green BN, Jarvis SA, Skilling J, Staunton J. Disentangling electrospray spectra with maximum entropy. Rapid Commun Mass Spectrom. 1992;6(11):707–11.

    Article  CAS  Google Scholar 

  58. Nakanishi T, Shimizu A. Determination of ionization efficiency of glycated and non-glycated peptides from the N-terminal of hemoglobin beta-chain by electrospray ionization mass spectrometry. J Chromatogr B Biomed Sci Appl. 2000;746(1):83–9.

    Article  CAS  Google Scholar 

  59. Kozak RP, Royle L, Gardner RA, Bondt A, Fernandes DL, Wuhrer M. Improved nonreductive O-glycan release by hydrazinolysis with ethylenediaminetetraacetic acid addition. Anal Biochem. 2014;453(1):29–37. Elsevier Inc.

    Article  CAS  Google Scholar 

  60. Wada Y, Dell A, Haslam SM, Tissot B, Canis K, Azadi P, et al. Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol Cell Proteomics. 2010;9(4):719–27.

    Article  CAS  Google Scholar 

  61. Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5(4):397–409.

    Article  CAS  Google Scholar 

  62. Hoffmann M, Marx K, Reichl U, Wuhrer M, Rapp E. Site-specific O-Glycosylation analysis of human blood plasma proteins. Mol Cell Proteomics. 2016;15(2):624–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Ban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuki, K., Toyo’oka, T. & Ban, K. Highly sensitive glycosylamine labelling of O-glycans using non-reductive β-elimination. Anal Bioanal Chem 409, 2269–2283 (2017). https://doi.org/10.1007/s00216-016-0171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0171-z

Keywords

Navigation