Skip to main content
Log in

Surfactant-free microemulsion electrokinetic chromatography (SF-MEEKC) with UV and MS detection - a novel approach for the separation and ESI-MS detection of neutral compounds

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microemulsion electrokinetic chromatography (MEEKC) is a powerful tool to separate neutral species based on differences in their hydrophobic and hydrophilic properties. However, as a major drawback the conventionally used SDS based microemulsions are not compatible with electrospray ionization mass spectrometry (ESI-MS). In this work, a surfactant-free microemulsion (SFME) consisting of water, ethanol, and 1-octanol is used for surfactant-free microemulsion electrokinetic chromatography (SF-MEEKC). Ammonium acetate was added to the SFME enabling electrophoretic separations. The stability of SFMEs containing ammonium acetate was investigated using small-angle X-ray scattering and dynamic light scattering. A method for the separation of a model system of hydrophobic and hydrophilic neutral vitamins, namely the vitamins B2 and D3, and the cationic vitamin B1 was developed using UV/VIS detection. The influence of the ammonium acetate concentration on the separation performance was studied in detail. The method was characterized concerning reproducibility of migration times and peak areas and concerning the linearity of the calibration data. Furthermore, SF-MEEKC was coupled to ESI-MS investigating the compatibility between SFMEs and the ESI process. The signal intensities of ESI-MS measurements of the model analytes were comparable for SFMEs and aqueous systems. Finally, the vitamin D3 content of a drug treating vitamin D3 deficiency was determined by SF-MEEKC coupled to ESI-MS using 25-hydroxycholecalciferol as an internal standard.

The concept of surfactant-free microemulsion electrokinetic chromatography coupled to electrospray ionization mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Terabe S, Otsuka K, Ichikawa K, Tsuchiya A, Ando T. Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal Chem. 1984;56:111–3.

    Article  CAS  Google Scholar 

  2. Altria KD, Mahuzier PE, Clark BJ. Background and operating parameters in microemulsion electrokinetic chromatography. Electrophoresis. 2003;24(3):315–24.

    Article  CAS  Google Scholar 

  3. Pyell U, ed. Electrokinetic chromatography: theory, instrumentation and applications. John Wiley & Sons; 2006.

  4. Tripodi V, Flor S, Carlucci A, Lucangioli S. Simultaneous determination of natural and synthetic estrogens by EKC using a novel microemulsion. Electrophoresis. 2006;27:4431–8.

    Article  CAS  Google Scholar 

  5. Vomastova L, Mikšik I, Deyl Z. Microemulsion and micellar electrokinetic chromatography of steroids. J Chromatogr B Biomed Sci Appl. 1996;681:107–13.

    Article  CAS  Google Scholar 

  6. Mahuzier PE, Altria KD, Clark BJ. Selective and quantitative analysis of 4-hydroxybenzoate preservatives by microemulsion electrokinetic chromatography. J Chromatogr A. 2001;924(1–2):465–70.

    Article  CAS  Google Scholar 

  7. Huang HY, Lai YC, Chiu CW, Yeh JM. Comparing micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for the analysis of preservatives in pharmaceutical and cosmetic products. J Chromatogr A. 2003;993(1–2):153–64.

    Article  CAS  Google Scholar 

  8. Hsi-Ya H, Chia-Ling C, Chen-Wen C, Jui-Ming Y. Application of microemulsion electrokinetic chromatography for the detection of preservatives in foods. Food Chem. 2005;89(2):315–22.

    Article  Google Scholar 

  9. Xie JP, Zhang JY, Liu HX, et al. Microemulsion electrokinetic chromatography with laser-induced fluorescence detection: as tested with amino acid derivatives. Biomed Chromatogr. 2004;18(8):600–7.

    Article  CAS  Google Scholar 

  10. Javor T, Buchberger W, Tanzcos I. Determination of low-molecular-mass phenolic and non-phenolic lignin degradation compounds in wood digestion solutions by capillary electrophoresis. Microchim Acta. 2000;135(1–2):45–53.

    Article  CAS  Google Scholar 

  11. Terabe S, Matsubara N, Ishihama Y, Okada Y. Microemulsion electrokinetic chromatography: comparison with micellar electrokinetic chromatography. J Chromatogr A. 1992;608(1–2):23–9.

    Article  CAS  Google Scholar 

  12. Subirats X, Yuan HP, Chaves V, Marzal N, Roses M. Micoemulsion electrokinetic chromatography as a suitable tool for lipophilicity determination of acidic, neutral, and basic compounds. Electrophoresis 2016;37(14):2010–2016.

  13. Zemann AJ. Conductivity detection in capillary electrophoresis. Trends Anal Chem. 2001;20(6–7):346–54.

    Article  CAS  Google Scholar 

  14. Gennaro LA, Salas-Solano O, Ma S. Capillary electrophoresis-mass spectrometry as a characterization tool for therapeutic proteins. Anal Biochem. 2006;355(2):249–58.

    Article  CAS  Google Scholar 

  15. Olivares JA, Nguyen NT, Yonker CR, Smith RD. On-line mass spectrometric detection for capillary zone electrophoresis. Anal Chem. 1987;59(9):1230–2.

    Article  CAS  Google Scholar 

  16. Yu LS, Xu XQ, Huang L, Ling JM, Chen GN. Separation and determination of flavonoids using microemulsion EKC with electrochemical detection. Electrophoresis. 2008;29(3):726–33.

    Article  CAS  Google Scholar 

  17. Bytzek AK, Reithofer MR, Galanski M, Groessl M, Keppler BK, Hartinger CG. The first example of MEEKC-ICP-MS coupling and its application for the analysis of anticancer platinum complexes. Electrophoresis. 2010;31(7):1144–50.

    Article  CAS  Google Scholar 

  18. Hoffmann E, Stroobant V. Mass spectrometry. Principles and applications. John Wiley & Sons; 2007.

  19. Matysik F-M, Neusüss C, Pelzing M. Fast capillary electrophoresis coupled with time-of-flight mass spectrometry under separation conditions of high electrical field strengths. Analyst. 2008;133(12):1764–6.

    Article  CAS  Google Scholar 

  20. Klossek ML, Touraud D, Zemb T, Kunz W. Structure and solubility in surfactant-free microemulsions. ChemPhysChem. 2012;13(18):4116–9.

    Article  CAS  Google Scholar 

  21. Smith GD, Donelan CE, Barden RE. Oil-continuous microemulsions composed of hexane, water, and 2-propanol. J Colloid Interface Sci. 1977;60(3):488–96.

    Article  CAS  Google Scholar 

  22. Diat O, Klossek ML, Touraud D, et al. Octanol-rich and water-rich domains in dynamic equilibrium in the pre-ouzo region of ternary systems containing a hydrotrope. J Appl Crystallogr. 2013;46(6):1665–9.

    Article  CAS  Google Scholar 

  23. Marcus J, Touraud D, Prévost S, Diat O, Zemb T, Kunz W. Influence of additives on the structure of surfactant-free microemulsions. Phys Chem Chem Phys. 2015;17(48):32528–38.

    Article  CAS  Google Scholar 

  24. Vitale SA, Katz JL. Liquid droplet dispersions formed by homogeneous liquid - liquid nucleation: “the ouzo effect”. Langmuir. 2003;19:4105–10.

    Article  CAS  Google Scholar 

  25. Schöttl S, Marcus J, Diat O, et al. Emergence of surfactant-free micelles from ternary solutions. Chem Sci. 2014;5(8):2909–3340.

    Article  Google Scholar 

  26. Zemb T, Klossek ML, Lopian T, et al. How to explain the occurrence of microemulsions formed by solvent mixtures without surfactants. Proc Natl Acad Sci U S A. 2015;113(16):4260–5.

    Article  Google Scholar 

  27. Fischer V, Marcus J, Touraud D, Diat O, Kunz W. Toward surfactant-free and water-free microemulsions. J Colloid Interface Sci. 2015;453:186–93.

    Article  CAS  Google Scholar 

  28. Hankel RF, Rojas PE, Cano-Sarabia M, et al. Surfactant-free CO2 -based microemulsion-like systems. Chem Commun. 2014;50(60):8215–8.

    Article  CAS  Google Scholar 

  29. Zoumpanioti M, Karali M, Xenakis A, Stamatis H. Lipase biocatalytic processes in surfactant free microemulsion-like ternary systems and related organogels. Enzym Microb Technol. 2006;39(4):531–9.

    Article  CAS  Google Scholar 

  30. Gawrys KL, Blankenship GA, Kilpatrick PK. Solvent entrainment in and flocculation of asphaltenic aggregates probed by small-angle neutron scattering. Langmuir. 2006;22(10):4487–97.

    Article  CAS  Google Scholar 

  31. Lopian T, Schöttl S, Prévost S, Pellet-Rostaing S, Horinek D, Kunz W, et al. Morphologies observed in unltraflexible microemulsions with and without the presence of a strong acid. ACS Cent Sci. 2016;2:467–75.

    Article  CAS  Google Scholar 

  32. Callmer K, Davies L. Separation and determination of vitamin B1, B2, B6 and nicotinamide in commercial vitamin preparations using high performance cation exchange chromatography. Chromatographia. 1974;7:644–50.

    Article  CAS  Google Scholar 

  33. Boso RL, Bellini MS, Miksik I, Deyl Z. Microemulsion electrokinetic chromatography with different organic modifiers: separation of water- and lipid-soluble vitamins. J Chromatogr A. 1995;709(1):11–9.

    Article  CAS  Google Scholar 

  34. Altria KD. Background theory and applications of microemulsion electrokinetic chromatography. J Chromatogr A. 2000;892(1–2):171–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tobias Lopian from the Institut de Chimie Séparative Marcoule (ICSM) for SAXS measurements. S.K. thanks the Fonds der chemischen Industrie (FCI) for a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Matysik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Fundamental Aspects of Electromigrative Separation Techniques with guest editors Carolin Huhn and Pablo A. Kler.

Andrea Beutner and Sebastian Krickl contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.72 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohorič, U., Beutner, A., Krickl, S. et al. Surfactant-free microemulsion electrokinetic chromatography (SF-MEEKC) with UV and MS detection - a novel approach for the separation and ESI-MS detection of neutral compounds. Anal Bioanal Chem 408, 8681–8689 (2016). https://doi.org/10.1007/s00216-016-0057-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0057-0

Keywords

Navigation