Skip to main content
Log in

On-chip intermediate LED-IF-based detection for the control of electromigration in multichannel networks

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Monitoring analytes during the transfer step from the first to the second dimension in multidimensional electrophoretic separations is crucial to determine and control the optimal time point for sample transfer and thus to avoid band broadening or unwanted splitting of the sample band with consequent sample loss. A spatially resolved intermediate on-chip LED-induced fluorescence detection system was successfully implemented for a hybrid capillary-chip glass interface. The setup includes a high-power 455-nm LED prototype as an excitation light source and a linear light fiber array consisting of 23 light fibers with a diameter of 100 μm for spatially resolved fluorescence detection in combination with a push-broom imager for hyperspectral detection. Using a basic FITC solution, the linear working range was determined to be 0.125 to 25 μg/ml for a single light guide and the absolute detection limit was 0.04 fmol at a signal-to-noise ratio of 4. With the setup presented here, labeled β-lactoglobulin focused via capillary isoelectric focusing was detectable on-chip with a sufficient intensity to monitor the analyte band transfer in the glass-chip interface demonstrating its applicability for full or intermediate on-chip detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kler PA, Sydes D, Huhn C. Column-coupling strategies for multidimensional electrophoretic separation techniques. Anal Bioanal Chem. 2015;407(1):119–38.

    Article  CAS  Google Scholar 

  2. Lamari FN, Kuhn R, Karamanos NK. Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis. J Chromatogr B. 2003;793(1):15–36.

    Article  CAS  Google Scholar 

  3. Wu J, Pawliszyn J. Capillary isoelectric focusing with a universal concentration gradient imaging system using a charge-coupled photodiode array. Anal Chem. 1992;64:2934–41.

    Article  CAS  Google Scholar 

  4. Chiang MT, Chang SY, Whang CW. Analysis of baclofen by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A. 2000;877:233–7.

    Article  CAS  Google Scholar 

  5. Horká M, Willimann T, Blum M, Nording P, Friedl Z, Šlais K. Capillary isoelectric focusing with UV-induced fluorescence detection. J Chromatogr A. 2001;916:65–71.

    Article  Google Scholar 

  6. Schwarz MA, Hauser PC. Recent developments in detection methods for microfabricated analytical devices. Lab Chip. 2001;1:1–6.

    Article  CAS  Google Scholar 

  7. Lin YW, Chiu TC, Chang HT. Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis. J Chromatogr B. 2003;793:37–48.

    Article  CAS  Google Scholar 

  8. Liu Z, Pawliszyn J. Capillary isoelectric focusing of proteins with liquid core waveguide laser-induced fluorescence whole column imaging detection. Anal Chem. 2003;75:4887–94.

    Article  CAS  Google Scholar 

  9. Götz S, Karst U. Recent developments in optical detection methods for microchip separations. Anal Bioanal Chem. 2007;387:183–92.

    Article  Google Scholar 

  10. Jung B, Zhu Y, Santiago JG. Detection of 100 aM fluorophores using a high-sensitivity on-chip CE system and transient isotachophoresis. Anal Chem. 2007;79:345–9.

    Article  CAS  Google Scholar 

  11. Liu Z, Lemma T, Pawliszyn J. Capillary isoelectric focusing coupled with dynamic imaging detection: a one-dimensional separation for two-dimensional protein characterization. J Proteome Res. 2006;5:1246–51.

    Article  CAS  Google Scholar 

  12. Fu JL, Fang Q, Zhang T, Jin XH, Fang ZL. Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement. Anal Chem. 2006;78:3827–34.

    Article  CAS  Google Scholar 

  13. Dada OO, Ramsay LM, Dickerson JA, Cermak N, Jiang R, Zhu C, et al. Capillary array isoelectric focusing with laser-induced fluorescence detection: milli-pH unit resolution and yoctomole mass detection limits in a 32-channel system. Anal Bioanal Chem. 2010;397:3305–10.

    Article  CAS  Google Scholar 

  14. Ramsay LM, Dickerson JA, Dada O, Dovichi NJ. Femtomolar concentration detection limit and zeptomole mass detection limit for protein separation by capillary isoelectric focusing and laser-induced fluorescence. Anal Chem. 2009;81:1741–6.

    Article  CAS  Google Scholar 

  15. Huhn C, Pütz M, Pyell U. Separation of very hydrophobic analytes by micellar electrokinetic chromatography. III. Characterization and optimization of the composition of the separation electrolyte using carbon number equivalents. Electrophoresis. 2008;29:783–95.

    Article  CAS  Google Scholar 

  16. Ryvolova M, Macka M, Preisler J. Portable capillary-based (non-chip) capillary electrophoresis. Trac-Trend Anal Chem. 2010;29:339–53.

    Article  CAS  Google Scholar 

  17. Tong W, Yeung ES. Simple double-beam absorption detection systems for capillary electrophoresis based on diode lasers and light-emitting diodes. J Chromatogr A. 1995;718:177–85.

    Article  CAS  Google Scholar 

  18. Xiao D, Zhao S, Yuan H, Yang X. CE detector based on light-emitting diodes. Electrophoresis. 2007;28:233–42.

    Article  CAS  Google Scholar 

  19. Xiao D, Yan L, Yuan H, Zhao S, Yang X, Choi MMF. CE with LED-based detection: an update. Electrophoresis. 2009;30:189–202.

    Article  CAS  Google Scholar 

  20. Chabinyc ML, Chiu DT, McDonald JC, Stroock AD, Christian JF, Karger AM, et al. An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications. Anal Chem. 2001;73:4491–8.

    Article  CAS  Google Scholar 

  21. Sluszny C, He Y, Yeung ES. Light-emitting diode-induced fluorescence detection of native proteins in capillary electrophoresis. Electrophoresis. 2005;26:4197–203.

    Article  CAS  Google Scholar 

  22. Liu C, Mo YY, Chen ZG, Li X, Li OL, Zhou X. Dual fluorescence/contactless conductivity detection for microfluidic chip. Anal Chim Acta. 2008;621:171–7.

    Article  CAS  Google Scholar 

  23. Novak L, Neuzil P, Pipper J, Zhang Y, Lee S. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip. 2007;7:27–9.

    Article  CAS  Google Scholar 

  24. Wu J, Pawliszyn J. Absorption spectra and multicapillary imaging detection for capillary isoelectric focusing using a charge coupled device camera. Analyst. 1995;120:1567–71.

    Article  CAS  Google Scholar 

  25. Beck W, van Hoek R, Engelhardt H. Application of a diode-array detector in capillary electrophoresis. Electrophoresis. 1993;14:540–6.

    Article  CAS  Google Scholar 

  26. Schäferling M. The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed. 2012;51:3532–54.

    Article  Google Scholar 

  27. Liu Z, Pawliszyn J. Applications of capillary isoelectric focusing with liquid-core waveguide laser-induced fluorescence whole-column imaging detection. Anal Biochem. 2005;336:94–101.

    Article  CAS  Google Scholar 

  28. Kler PA, Posch TN, Pattky M, Tiggelaar RM, Huhn C. Column coupling isotachophoresis–capillary electrophoresis with mass spectrometric detection: characterization and optimization of microfluidic interfaces. J Chromatogr A. 2013;1297:204–12.

    Article  CAS  Google Scholar 

  29. Kler PA, Huhn C. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE–MS. Anal Bioanal Chem. 2014;406:7163–74.

    Article  CAS  Google Scholar 

  30. Shao X, Shen Y, O’Neill K, Lee ML. Capillary electrophoresis using diol-bonded fused-silica capillaries. J Chromatogr A. 1999;830:415–22.

    Article  CAS  Google Scholar 

  31. Tiggelaar R, Benito-Lopez F, Hermes D, Rathgen H, Egberink R, Mugele F, et al. Fabrication, mechanical testing and application of high-pressure glass microreactor chips. Chem Eng J. 2007;131:163–70.

    Article  CAS  Google Scholar 

  32. Craig DB, Wetzl BK, Duerkop A, Wolfbeis OS. Determination of picomolar concentrations of proteins using novel amino reactive chameleon labels and capillary electrophoresis laser-induced fluorescence detection. Electrophoresis. 2005;26:2208–13.

    Article  CAS  Google Scholar 

  33. Wetzl BK, Yarmoluk SM, Craig DB, Wolfbeis OS. Chameleon labels for staining and quantifying proteins. Angew Chem Int Ed. 2004;40:5400–2.

    Article  Google Scholar 

  34. Wojcik R, Swearingen KE, Dickerson JA, Turner EH, Ramsay LM, Dovichi NJ. Reaction of fluorogenic reagents with proteins: I. Mass spectrometric characterization of the reaction with 3-(2-furoyl)quinoline-2-carboxaldehyde, Chromeo P465, and Chromeo P503. J Chromatogr A. 2008;1194:243–8.

    Article  CAS  Google Scholar 

  35. Dickerson JA, Ramsay LM, Dada OO, Cermak N, Dovichi NJ. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection. Electrophoresis. 2010;31:2650–4.

    Article  CAS  Google Scholar 

  36. Verzola B, Gelfi C, Righetti PG. Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis: II. Effects of adsorbed, neutral polymers on quenching the interaction. J Chromatogr A. 2000;874:293–303.

    Article  CAS  Google Scholar 

  37. Sjöback R, Hygren J, Kubista M. Quantitative spectral analysis of multicomponent equilibria. Anal Chim Acta. 1995;302:121–5.

    Article  Google Scholar 

  38. Evangelista RA, Liu MS, Chen FTA. Characterization of 9-aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem. 1995;67:2239–45.

    Article  CAS  Google Scholar 

  39. Goetz AFH, Vane G, Solomon JE, Rock BN. Imaging spectrometry for earth remote sensing. Science. 1985;228:1147–53.

    Article  CAS  Google Scholar 

  40. Dale LM, Thewis A, Boudry C, Rotar I, Dardenne P, Baeten V, et al. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. Appl Spectrosc Rev. 2013;48:142–59.

    Article  CAS  Google Scholar 

  41. Woltmann E, Meyer H, Weigel D, Pritzke H, Posch TN, Kler PA, et al. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms. Anal Bioanal Chem. 2014;406:6347–62.

    Article  CAS  Google Scholar 

  42. Nickerson B, Jorgenson JW. High speed capillary zone electrophoresis with laser induced fluorescence detection. J High Res Chromatogr. 1988;11(7):533–4.

    Article  CAS  Google Scholar 

  43. Wu X, Wu J, Pawliszyn J. Fluorescence imaging detection for capillary isoelectric focusing. Electrophoresis. 1995;16(1):1474–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Excellence Initiative, a jointly funded program of the German federal and state governments, organized by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Huhn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Fundamental Aspects of Electromigrative Separation Techniques with guest editors Carolin Huhn and Pablo A. Kler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sydes, D., Kler, P.A., Meyer, H. et al. On-chip intermediate LED-IF-based detection for the control of electromigration in multichannel networks. Anal Bioanal Chem 408, 8713–8725 (2016). https://doi.org/10.1007/s00216-016-0033-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0033-8

Keywords

Navigation