Skip to main content
Log in

Nanosensors for neurotransmitters

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Neurotransmitters are an important class of messenger molecules. They govern chemical communication between cells for example in the brain. The spatiotemporal propagation of these chemical signals is a crucial part of communication between cells. Thus, the spatial aspect of neurotransmitter release is equally important as the mere time-resolved measurement of these substances. In conclusion, without tools that provide the necessary spatiotemporal resolution, chemical signaling via neurotransmitters cannot be studied in greater detail. In this review article we provide a critical overview about sensors/probes that are able to monitor neurotransmitters. Our focus are sensing concepts that provide or could in the future provide the spatiotemporal resolution that is necessary to ‘image’ dynamic changes of neurotransmitter concentrations around cells. These requirements set the bar for the type of sensors we discuss. The sensor must be small enough (if possible on the nanoscale) to provide the envisioned spatial resolution and it should allow parallel (spatial) detection. In this article we discuss both optical and electrochemical concepts that meet these criteria. We cover techniques that are based on fluorescent building blocks such as nanomaterials, proteins and organic dyes. Additionally, we review electrochemical array techniques and assess limitations and possible future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eccles JC (1982) The synapse: from electrical to chemical transmission. Annu Rev Neurosci 5:325–339

    Article  CAS  Google Scholar 

  2. Bergquist J, Tarkowski A, Ekman R, Ewing A (1994) Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc Natl Acad Sci U S A 91(26):12912–12916

    Article  CAS  Google Scholar 

  3. Hyman SE (2005) Neurotransmitters. Curr Biol 15(5):R154–158

    Article  CAS  Google Scholar 

  4. Gundelfinger ED, Kessels MM, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4(2):127–139

    Article  CAS  Google Scholar 

  5. Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27(5):270–277

    Article  CAS  Google Scholar 

  6. Olah S, Fule M, Komlosi G, Varga C, Baldi R, Barzo P, Tamas G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461(7268):1278–1281

    Article  CAS  Google Scholar 

  7. Hnasko TS, Edwards RH (2012) Neurotransmitter corelease: mechanism and physiological role. Annu Rev Physiol 74:225–243

    Article  CAS  Google Scholar 

  8. Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC (2013) Neurotransmitter switching in the adult brain regulates behavior. Science 340(6131):449–453

    Article  CAS  Google Scholar 

  9. Devor A, Bandettini PA, Boas DA, Bower JM, Buxton RB, Cohen LB, Dale AM, Einevoll GT, Fox PT, Franceschini MA, Friston KJ, Fujimoto JG, Geyer MA, Greenberg JH, Halgren E, Hamalainen MS, Helmchen F, Hyman BT, Jasanoff A, Jernigan TL, Judd LL, Kim SG, Kleinfeld D, Kopell NJ, Kutas M, Kwong KK, Larkum ME, Lo EH, Magistretti PJ, Mandeville JB, Masliah E, Mitra PP, Mobley WC, Moskowitz MA, Nimmerjahn A, Reynolds JH, Rosen BR, Salzberg BM, Schaffer CB, Silva GA, So PT, Spitzer NC, Tootell RB, Van Essen DC, Vanduffel W, Vinogradov SA, Wald LL, Wang LV, Weber B, Yodh AG (2013) The challenge of connecting the dots in the B.R.a.I.N. Neuron 80(2):270–274

    Article  CAS  Google Scholar 

  10. Andrews AM (2015) The future of monitoring molecules. ACS Chem Neurosci 6(1):1–2

    Article  CAS  Google Scholar 

  11. Wightman RM (2015) Monitoring molecules: insights and progress. ACS Chem Neurosci 6(1):5–7

    Article  CAS  Google Scholar 

  12. Lee T, Cai LX, Lelyveld VS, Hai A, Jasanoff A (2014) Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science 344(6183):533–535

    Article  CAS  Google Scholar 

  13. Meyer-Lindenberg A (2010) From maps to mechanisms through neuroimaging of schizophrenia. Nature 468(7321):194–202

    Article  CAS  Google Scholar 

  14. Aerts JT, Louis KR, Crandall SR, Govindaiah G, Cox CL, Sweedler JV (2014) Patch clamp electrophysiology and capillary electrophoresis-mass spectrometry metabolomics for single cell characterization. Anal Chem 86(6):3203–3208

    Article  CAS  Google Scholar 

  15. Deisseroth K, Schnitzer MJ (2013) Engineering approaches to illuminating brain structure and dynamics. Neuron 80(3):568–577

    Article  CAS  Google Scholar 

  16. Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ (2009) Advances in light microscopy for neuroscience. Annu Rev Neurosci 32:435–506

    Article  CAS  Google Scholar 

  17. Perry M, Li Q, Kennedy RT (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Analy Chim Acta 653(1):1–22

    Article  CAS  Google Scholar 

  18. Westerink RH, Ewing AG (2008) The PC12 cell as model for neurosecretion. Acta Physiol (Oxf) 192(2):273–285

    Article  CAS  Google Scholar 

  19. Omiatek DM, Dong Y, Heien ML, Ewing AG (2010) Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles. ACS Chem Neurosci 1(3):234–245

    Article  CAS  Google Scholar 

  20. Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14(10):6084–6093

    CAS  Google Scholar 

  21. Kruss S, Wolfram T, Martin R, Neubauer S, Kessler H, Spatz JP (2010) Stimulation of cell adhesion at nanostructured teflon interfaces. Adv Mater 22(48):5499–5506

    Article  CAS  Google Scholar 

  22. Kruss S, Erpenbeck L, Schon MP, Spatz JP (2012) Circular, nanostructured, and biofunctionalized hydrogel microchannels for dynamic cell adhesion studies. Lab Chip 12(18):3285–3289

    Article  CAS  Google Scholar 

  23. Kruss S, Erpenbeck L, Amschler K, Mundinger TA, Boehm H, Helms HJ, Friede T, Andrews RK, Schon MP, Spatz JP (2013) Adhesion maturation of neutrophils on nanoscopically presented platelet glycoprotein ibalpha. ACS Nano 7(11):9984–9996

    Article  CAS  Google Scholar 

  24. Carregal-Romero S, Caballero-Diaz E, Beqa L, Abdelmonem AM, Ochs M, Huhn D, Suau BS, Valcarcel M, Parak WJ (2013) Multiplexed sensing and imaging with colloidal nano- and microparticles. Annu Rev Anal Chem (Palo Alto, CA) 6(1):53–81

    Article  CAS  Google Scholar 

  25. Amschler K, Erpenbeck L, Kruss S, Schon MP (2014) Nanoscale integrin ligand patterns determine melanoma cell behavior. ACS Nano 8(9):9113–9125

    Article  CAS  Google Scholar 

  26. Wang QH, Bellisario DO, Drahushuk LW, Jain RM, Kruss S, Landry MP, Mahajan SG, Shimizu SFE, Ulissi ZW, Strano MS (2014) Low dimensional carbon materials for applications in mass and energy transport. Chem Mater 26(1):172–183

    Article  CAS  Google Scholar 

  27. Kruss S, Srot V, van Aken PA, Spatz JP (2012) Au-Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports. Langmuir 28(2):1562–1568

    Article  CAS  Google Scholar 

  28. Balasubramanian K, Kern K (2014) 25th Anniversary article: label-free electrical biodetection using carbon nanostructures. Adv Mater 26(8):1154–1175

    Article  CAS  Google Scholar 

  29. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468

    Article  CAS  Google Scholar 

  30. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768

    Article  CAS  Google Scholar 

  31. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461

    Article  CAS  Google Scholar 

  32. O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596

    Article  Google Scholar 

  33. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65(15):1933–1950

    Article  CAS  Google Scholar 

  34. Reuel NF, Grassbaugh B, Kruss S, Mundy JZ, Opel C, Ogunniyi AO, Egodage K, Wahl R, Helk B, Zhang J, Kalcioglu ZI, Tvrdy K, Bellisario DO, Mu B, Blake SS, Van Vliet KJ, Love JC, Wittrup KD, Strano MS (2013) Emergent properties of nanosensor arrays: applications for monitoring IgG affinity distributions, weakly affined hypermannosylation, and colony selection for biomanufacturing. ACS Nano 7(9):7472–7482

    Article  CAS  Google Scholar 

  35. Zhang J, Kruss S, Hilmer AJ, Shimizu S, Schmois Z, De La Cruz F, Barone PW, Reuel NF, Heller DA, Strano MS (2014) A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin T using near-infrared fluorescent single-walled carbon nanotube sensors. Adv Health Mater 3(3):412–423

    Article  CAS  Google Scholar 

  36. Jin H, Heller DA, Kalbacova M, Kim JH, Zhang J, Boghossian AA, Maheshri N, Strano MS (2010) Detection of single-molecule H2O2 signaling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nature Nanotechnol 5(4):302–309

    Article  CAS  Google Scholar 

  37. Kruss S, Landry MP, Vander Ende E, Lima BM, Reuel NF, Zhang J, Nelson J, Mu B, Hilmer A, Strano M (2014) Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J Am Chem Soc 136(2):713–724

    Article  CAS  Google Scholar 

  38. Bisker G, Ahn J, Kruss S, Ulissi ZW, Salem DP, Strano MS (2015) A mathematical formulation and solution of the CoPhMoRe inverse problem for helically wrapping polymer corona phases on cylindrical substrates. J Phys Chem C 119(24):13876–13886

    Article  CAS  Google Scholar 

  39. Freeman R, Bahshi L, Finder T, Gill R, Willner I (2009) Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots. Chem Commun (Camb) 7:764–766

    Article  Google Scholar 

  40. Mu Q, Xu H, Li Y, Ma S, Zhong X (2014) Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst (Cambridge, U K) 139(1):93–98

    Article  CAS  Google Scholar 

  41. Chen JL, Yan XP, Meng K, Wang SF (2011) Graphene oxide-based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Anal Chem 83(22):8787–8793

    Article  CAS  Google Scholar 

  42. Yu C, Luo M, Zeng F, Zheng F, Wu S (2011) Mesoporous silica particles for selective detection of dopamine with beta-cyclodextrin as the selective barricade. Chem Commun (Camb) 47(32):9086–9088

    Article  CAS  Google Scholar 

  43. Zhang X, Chen X, Kai S, Wang HY, Yang J, Wu FG, Chen Z (2015) Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal Chem 87(6):3360–3365

    Article  CAS  Google Scholar 

  44. Zhou X, Ma P, Wang A, Yu C, Qian T, Wu S, Shen J (2014) Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosens Bioelectronics 64C:404–410

    Google Scholar 

  45. Jeon SJ, Kwak SY, Yim D, Ju JM, Kim JH (2014) Chemically-modulated photoluminescence of graphene oxide for selective detection of neurotransmitter by "turn-on" response. J Am Chem Soc 136(31):10842–10845

    Article  CAS  Google Scholar 

  46. Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    Article  CAS  Google Scholar 

  47. Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127

    Article  CAS  Google Scholar 

  48. Lynge ME, van der Westen R, Postma A, Stadler B (2011) Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale 3(12):4916–4928

    Article  CAS  Google Scholar 

  49. Liebscher J, Mrowczynski R, Scheidt HA, Filip C, Hadade ND, Turcu R, Bende A, Beck S (2013) Structure of polydopamine: a never-ending story? Langmuir 29(33):10539–10548

    Article  CAS  Google Scholar 

  50. Cash KJ, Clark HA (2013) Phosphorescent nanosensors for in vivo tracking of histamine levels. Anal Chem 85(13):6312–6318

    Article  CAS  Google Scholar 

  51. Liang R, Broussard GJ, Tian L (2015) Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem Neurosci 6(1):84–93

    Article  CAS  Google Scholar 

  52. Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 102(24):8740–8745

    Article  CAS  Google Scholar 

  53. Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A 105(11):4411–4416

    Article  CAS  Google Scholar 

  54. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10(2):162–170

    Article  CAS  Google Scholar 

  55. Brun MA, Tan KT, Nakata E, Hinner MJ, Johnsson K (2009) Semisynthetic fluorescent sensor proteins based on self-labeling protein tags. J Am Chem Soc 131(16):5873–5884

    Article  CAS  Google Scholar 

  56. Masharina A, Reymond L, Maurel D, Umezawa K, Johnsson K (2012) A fluorescent sensor for GABA and synthetic GABA(B) receptor ligands. J Am Chem Soc 134(46):19026–19034

    Article  CAS  Google Scholar 

  57. Brun MA, Griss R, Reymond L, Tan KT, Piguet J, Peters RJ, Vogel H, Johnsson K (2011) Semisynthesis of fluorescent metabolite sensors on cell surfaces. J Am Chem Soc 133(40):16235–16242

    Article  CAS  Google Scholar 

  58. Brun MA, Tan KT, Griss R, Kielkowska A, Reymond L, Johnsson K (2012) A semisynthetic fluorescent sensor protein for glutamate. J Am Chem Soc 134(18):7676–7678

    Article  CAS  Google Scholar 

  59. Schena A, Johnsson K (2014) Sensing acetylcholine and anticholinesterase compounds. Angew Chem Int Ed Engl 53(5):1302–1305

    Article  CAS  Google Scholar 

  60. Takikawa K, Asanuma D, Namiki S, Sakamoto H, Ariyoshi T, Kimpara N, Hirose K (2014) High-throughput development of a hybrid-type fluorescent glutamate sensor for analysis of synaptic transmission. Angew Chem Int Ed Engl 53(49):13439–13443

    Article  CAS  Google Scholar 

  61. Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M, Watanabe M, Hirose K, Iino M (2010) Imaging extrasynaptic glutamate dynamics in the brain. Proc Natl Acad Sci U S A 107(14):6526–6531

    Article  CAS  Google Scholar 

  62. Nguyen QT, Schroeder LF, Mank M, Muller A, Taylor P, Griesbeck O, Kleinfeld D (2010) An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nat Neurosci 13(1):127–132

    Article  CAS  Google Scholar 

  63. Pradhan T, Jung HS, Jang JH, Kim TW, Kang C, Kim JS (2014) Chemical sensing of neurotransmitters. Chem Soc Rev 43(13):4684–4713

    Article  CAS  Google Scholar 

  64. Omiatek DM, Cans AS, Heien ML, Ewing AG (2010) Analytical approaches to investigate transmitter content and release from single secretory vesicles. Anal Bioanal Chem 397(8):3269–3279

    Article  CAS  Google Scholar 

  65. Kim D, Koseoglu S, Manning BM, Meyer AF, Haynes CL (2011) Electroanalytical eavesdropping on single cell communication. Anal Chem 83(19):7242–7249

    Article  CAS  Google Scholar 

  66. Keighron JD, Ewing AG, Cans AS (2012) Analytical tools to monitor exocytosis: a focus on new fluorescent probes and methods. Analyst (Cambridge, U K) 137(8):1755–1763

    Article  CAS  Google Scholar 

  67. Sames D, Dunn M, Karpowicz RJ, Sulzer D (2013) Visualizing Neurotransmitter Secretion at Individual Synapses. ACS Chem Neurosci 4(5):648–651

    Article  CAS  Google Scholar 

  68. Gubernator NG, Zhang H, Staal RG, Mosharov EV, Pereira DB, Yue M, Balsanek V, Vadola PA, Mukherjee B, Edwards RH, Sulzer D, Sames D (2009) Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324(5933):1441–1444

    Article  CAS  Google Scholar 

  69. Secor KE, Glass TE (2004) Selective amine recognition: development of a chemosensor for dopamine and norepinephrine. Org Lett 6(21):3727–3730

    Article  CAS  Google Scholar 

  70. Hettie KS, Liu X, Gillis KD, Glass TE (2013) Selective catecholamine recognition with NeuroSensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells. ACS Chem Neurosci 4(6):918–923

    Article  CAS  Google Scholar 

  71. Klockow JL, Hettie KS, Glass TE (2013) ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis. ACS Chem Neurosci 4(10):1334–1338

    Article  CAS  Google Scholar 

  72. Hettie KS, Klockow JL, Glass TE (2014) Three-input logic gates with potential applications for neuronal imaging. J Am Chem Soc 136(13):4877–4880

    Article  CAS  Google Scholar 

  73. Bucher ES, Wightman RM (2015) Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem 8(1):239–261

    Article  CAS  Google Scholar 

  74. Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG (2013) Chemical analysis of single cells. Anal Chem 85(2):522–542

    Article  CAS  Google Scholar 

  75. Mirzaei M, Sawan M (2014) Microelectronics-based biosensors dedicated to the detection of neurotransmitters: a review. Sensors (Basel) 14(10):17981–18008

    Article  CAS  Google Scholar 

  76. Jackowska K, Krysinski P (2013) New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 405(11):3753–3771

    Article  CAS  Google Scholar 

  77. Weltin A, Kieninger J, Enderle B, Gellner AK, Fritsch B, Urban GA (2014) Polymer-based, flexible glutamate and lactate microsensors for in vivo applications. Biosens Bioelectron 61:192–199

    Article  CAS  Google Scholar 

  78. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim Acta 182:1–41

    Article  CAS  Google Scholar 

  79. Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, Craighead HG, Lindau M (2005) Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc Natl Acad Sci U S A 102(39):13879–13884

    Article  CAS  Google Scholar 

  80. Wang J, Trouillon R, Lin Y, Svensson MI, Ewing AG (2013) Individually addressable thin-film ultramicroelectrode array for spatial measurements of single vesicle release. Anal Chem 85(11):5600–5608

    Article  CAS  Google Scholar 

  81. Yakushenko A, Katelhon E, Wolfrum B (2013) Parallel on-chip analysis of single vesicle neurotransmitter release. Anal Chem 85(11):5483–5490

    Article  CAS  Google Scholar 

  82. Wang J, Ewing AG (2014) Simultaneous study of subcellular exocytosis with individually addressable multiple microelectrodes. Analyst (Cambridge, U K) 139(13):3290–3295

    Article  CAS  Google Scholar 

  83. Carabelli V, Gosso S, Marcantoni A, Xu Y, Colombo E, Gao Z, Vittone E, Kohn E, Pasquarelli A, Carbone E (2010) Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens Bioelectron 26(1):92–98

    Article  CAS  Google Scholar 

  84. Chen P, Xu B, Tokranova N, Feng X, Castracane J, Gillis KD (2003) Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips. Anal Chem 75(3):518–524

    Article  CAS  Google Scholar 

  85. Wang L, Xu H, Song Y, Luo J, Wei W, Xu S, Cai X (2015) Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene. ACS Appl Mater Interfaces 7(14):7619–7626

    Article  CAS  Google Scholar 

  86. Yakushenko A, Schöps V, Mayer D, Offenhäusser A, Wolfrum B (2014) On-chip fast scan cyclic voltammetry for selective detection of redox active neurotransmitters. Phys Status Solidi 211(6):1364–1371

    Article  CAS  Google Scholar 

  87. Zhang B, Heien ML, Santillo MF, Mellander L, Ewing AG (2011) Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. Anal Chem 83(2):571–577

    Article  CAS  Google Scholar 

  88. Wu WZ, Huang WH, Wang W, Wang ZL, Cheng JK, Xu T, Zhang RY, Chen Y, Liu J (2005) Monitoring dopamine release from single living vesicles with nanoelectrodes. J Am Chem Soc 127(25):8914–8915

    Article  CAS  Google Scholar 

  89. Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH (2014) Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew Chem Int Ed Engl 53(46):12456–12460

    CAS  Google Scholar 

  90. Li X, Majdi S, Dunevall J, Fathali H, Ewing AG (2015) Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew Chem Int Ed Engl 54:11978–82

    Article  CAS  Google Scholar 

  91. Liu Y, Li M, Zhang F, Zhu A, Shi G (2015) Development of Au disk nanoelectrode down to 3 nm in radius for detection of dopamine release from a single cell. Anal Chem 87(11):5531–5538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fonds der chemischen Industrie (FCI) for financial support (Liebig fellowship for S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kruss.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polo, E., Kruss, S. Nanosensors for neurotransmitters. Anal Bioanal Chem 408, 2727–2741 (2016). https://doi.org/10.1007/s00216-015-9160-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9160-x

Keywords

Navigation