Skip to main content
Log in

Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method based on micellar liquid chromatography was developed to determine the concentration of three catecholamines (epinephrine, norepinephrine, and dopamine) in urine. The detection of these compounds in urine can be useful to diagnose several diseases, related to stress and sympathoadrenal system dysfunction, using a non-invasive collection procedure. The sample pretreatment was a simple dilution in a micellar solution, filtration, and direct injection, thus avoiding time-consuming and tedious extraction steps. Therefore, there is no need to use an internal standard. The three catecholamines were eluted using a C18 column and a mobile phase of 0.055 M sodium dodecyl sulfate-1.5 % methanol buffered at pH 3.8 running at 1.5 mL/min under isocratic mode in less than 25 min. The detection was performed by amperometry applying a constant potential of +0.5 V. The procedure was validated following the guidelines of the European Medicines Agency in terms of the following: calibration range (0.09–5 μg/mL), linearity (r 2 > 0.9995), limit of detection (0.02 μg/mL), within- and between-run accuracy (−6.5 to +8.4 %) and precision (<10.2 %), dilution integrity, matrix effect, robustness (<8.4), and stability. The obtained values were below those required by the guide. The method was rapid, easy-to-handle, eco-friendly, and safe and provides reliable quantitative data, and is thus useful for routine analysis. The procedure was applied to the analysis of epinephrine, norepinephrine, and dopamine in urine samples from patients of a local hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42: D1091-1097. Available at: http://www.drugbank.ca/. Accessed 24 Jul 2015

  2. Fernandez-Espejo E, Armengol JA, Flores JA, Galan-Rodriguez B, Ramiro S (2005) Cells of the sympathoadrenal lineage: biological properties as donor tissue for cell-replacement therapies for Parkinson’s disease. Brain Res Rev 49:343–354. doi:10.1016/j.brainresrev.2005.01.004

    Article  CAS  Google Scholar 

  3. Blakemore C, Jennett S (2001) Catecholamines. In: The Oxford companion to the body, Encyclopedia.com. Available at: http://www.encyclopedia.com/doc/1O128-catecholamines.html. Accessed 24 Jul 2015

  4. Tsunoda M (2006) Recent advances for the analysis of catecholamines and their metabolites. Anal Bioanal Chem 386:506–514. doi:10.1007/s00216-006-0675-z

    Article  CAS  Google Scholar 

  5. Bergquist J, Ściubisz A, Kaczor A, Silberring J (2002) Catecholamines and methods for their identification and quantitation in biological tissues and fluids. J Neurosci Methods 113:1–13. doi:10.1016/S0165-0270(01)00502-7

    Article  CAS  Google Scholar 

  6. Marsteller DA, Gerasimov MR, Schiffer WK, Geiger JM, Barnett CR, Borg JS, Scott S, Ceccarelli J, Volkow ND, Molina PE, Alexoff DL, Dewey SL (2002) Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex. Neuropsychopharmacology 27:163–170. doi:10.1016/S0893-133X(02)00288-9

    Article  CAS  Google Scholar 

  7. Tritsch NX, Sabatini BL (2002) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76:33–50. doi:10.1016/j.neuron.2012.09.023

    Article  Google Scholar 

  8. Bergey MR, Steele MS, Bereiter DA, Viali S, McGarvey ST (2011) Behavioral and perceived stressor effects on urinary catecholamine excretion in adult samoans. Am J Hum Biol 23:693–702. doi:10.1002/ajhb.21198

    Article  Google Scholar 

  9. Grouzmann E, Lamine F (2013) Determination of catecholamines in plasma and urine. Best Pract Res Clin Endocrinol Metab 27:713–723. doi:10.1016/j.beem.2013.06.004

    Article  CAS  Google Scholar 

  10. Seraidarian P, Seraidarian PI, Cavalcanti BN, Marchini L, Neves ACC (2009) Urinary levels of catecholamines among individuals with and without sleep bruxism. Sleep Breath 13:85–88. doi:10.1007/s11325-008-0193-7

    Article  Google Scholar 

  11. Wingenfeld K, Whooley MA, Neylan TC, Otte C, Cohen BE (2015) Effect of current and lifetime posttraumatic stress disorder on 24-h urinary catecholamines and cortisol: results from the mind your heart study. Psychoneuroendocrinology 52:83–91. doi:10.1016/j.psyneuen.2014.10.023

    Article  CAS  Google Scholar 

  12. Goldstein DS (2010) Catecholamines 101. Clin Auton Res 20:331–335. doi:10.1007/s10286-010-0065-7

    Article  Google Scholar 

  13. Bharath S, Andersen JK (2004) Determination of catecholamines and their metabolites in rat urine by ultra-performance liquid chromatography–tandem mass spectrometry for the study of identifying potential markers for Alzheimer’s disease. Rejuvenation Res 7:92–94. doi:10.1089/1549168041553071

    Article  CAS  Google Scholar 

  14. Saxena AR, Chamarthi B, Williams GH, Hopkins PN, Seely EW (2013) Predictors of plasma and urinary catecholamine levels in normotensive and hypertensive men and women. J Hum Hypertens 14:292–297. doi:10.1038/jhh.2013.112

    Google Scholar 

  15. Lv C, Li Q, Liu X, He B, Sui Z, Xu H, Yin Y, Liu R, Bi K (2015) Determination of catecholamines and their metabolites in rat urine by ultra-performance liquid chromatography–tandem mass spectrometry for the study of identifying potential markers for Alzheimer’s disease. J Mass Spectrom 50:354–363. doi:10.1002/jms.3536

    Article  CAS  Google Scholar 

  16. Nalewajko E, Wiszowata A, Kojło A (2007) Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection. J Pharm Biomed Anal 43:1673–1681. doi:10.1016/j.jpba.2006.12.021

    Article  CAS  Google Scholar 

  17. Mateva LV, Petrov SS, Lozanov VS, Elenkova AP, Zacharieva S, Mitev VI (2008) Simultaneous determination of free polyamines, catecholamines and metanephrines in plasma and urine. J Liq Chromatogr RT 31:2128–2140. doi:10.1080/10826070802225411

    Article  CAS  Google Scholar 

  18. Kanamori T, Isokawa M, Funatsu T, Tsunoda M (2015) Development of analytical method for catechol compounds in mouse urine using hydrophilic interaction liquid chromatography with fluorescence detection. J Chromatogr B 985:142–148. doi:10.1016/j.jchromb.2015.01.038

    Article  CAS  Google Scholar 

  19. Saracino MA, Santarcangelo L, Raggi MA, Mercolini L (2015) Microextraction by packed sorbent (MEPS) to analyze catecholamines in innovative biological samples. J Pharm Biomed Anal 104:122–129. doi:10.1016/j.jpba.2014.11.003

    Article  CAS  Google Scholar 

  20. Kumar A, Hart JP, McCalley DV (2011) Determination of catecholamines in urine using hydrophilic interaction chromatography with electrochemical detection. J Chromatogr A 1218:3854–3861. doi:10.1016/j.chroma.2011.04.034

    Article  CAS  Google Scholar 

  21. Manickum T (2008) Interferences by anti-TB drugs in a validated HPLC assay for urinary catecholamines and their successful removal. J Chromatogr B 873:124–128. doi:10.1016/j.jchromb.2008.08.005

    Article  CAS  Google Scholar 

  22. Lee M, Oh SY, Pathak TS, Paeng IR, Cho BY, Paeng KJ (2007) Selective extraction of catecholamines by packed fiber solid-phase using composite nanofibers composing of polymeric crown ether with polystyrene. J Chromatogr A 1160:340–344. doi:10.1016/j.chroma.2007.06.033

    Article  CAS  Google Scholar 

  23. Tsunoda M, Aoyama C, Ota S, Tamura T, Funatsu T (2011) Extraction of catecholamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-electrochemical detection. Anal Methods 3:582–585. doi:10.1039/C0AY00686F

    Article  CAS  Google Scholar 

  24. Chen LQ, Wang Y, Qu JS, Deng JJ, Kang XJ (2015) Selective extraction of catecholamines by packed fiber solid-phase using composite nanofibers composing of polymeric crown ether with polystyrene. Biomed Chromatogr 29:103–109. doi:10.1002/bmc.3245

    Article  CAS  Google Scholar 

  25. Thomas DH, Taylor JD, Barnaby OS, Hage DS (2008) Determination of free catecholamines in urine by tandem affinity/ion-pair chromatography and flow injection analysis. Clin Chim Acta 398:63–69. doi:10.1016/j.cca.2008.08.013

    Article  CAS  Google Scholar 

  26. Smith EA, Schwartz A, Lucot JB (2013) Measurement of urinary catecholamines in small samples for mice. J Pharmacol Toxicol 67:45–49. doi:10.1016/j.vascn.2012.08.170

    Article  CAS  Google Scholar 

  27. De Jong WHA, de Vries EGE, Wolffenbuttel BHR, Kema IP (2010) Automated mass spectrometric analysis of urinary free catecholamines using on-line solid phase extraction. J Chromatogr B 878:1506–1512. doi:10.1016/j.jchromb.2010.03.050

    Article  Google Scholar 

  28. Marco-Peiró S, Beltrán-Martinavarro B, Rambla-Alegre M, Peris-Vicente J, Esteve-Romero J (2012) Validation of an analytical methodology to quantify melamine in body fluids using micellar liquid chromatography. Talanta 88:617–622. doi:10.1016/j.talanta.2011.11.047

    Article  Google Scholar 

  29. Berthod A, García-Alvarez-Coque MC (2000) Micellar liquid chromatography. In: Cazes J (ed) Chromatographic science series (Vol. 83). Marcel-Dekker, New York, USA

  30. Romero-Cano R, Kassuha D, Peris-Vicente J, Roca-Genovés P, Carda-Broch S, Esteve-Romero J (2015) Analysis of thiabendazole, 4-tert-octylphenol and chlorpyrifos in waste and sewage water by direct injection–micellar liquid chromatography. Analyst 140:1739–1746. doi:10.1039/c4an01782j

    Article  CAS  Google Scholar 

  31. Rambla-Alegre M, Peris-Vicente J, Esteve-Romero J, Carda-Broch S (2010) Analysis of selected veterinary antibiotics in fish by micellar liquid chromatography with fluorescence detection and validation in accordance with regulation 2002/657/EC. Food Chem 123:1294–1302. doi:10.1016/j.foodchem.2010.05.119

    Article  CAS  Google Scholar 

  32. Committee for Medicinal Products for Human Use, Guideline on bioanalytical method validation (2011) European Medicines Agency, London, UK. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf. Accessed 24 Jul 2015

  33. Magnusson B, Örnemark U (Ed.) (2014) EURACHEM Guide: the fitness for purpose of analytical methods—a laboratory guide to method validation and related topics, 2nd ed. Available at: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf. Accessed 24 Jul 2015

  34. Torres-Lapasió JR (2000) Michrom software. Marcel-Dekker, New York

    Google Scholar 

  35. Lough WJ, Wainer IW (eds) (1996) High performance liquid chromatography: fundamental principles and practice. Blackie Academic & Professional, Glasgow

    Google Scholar 

  36. Rambla-Alegre M, Peris-Vicente J, Marco-Peiró S, Beltrán-Martinavarro B (2010) Development of an analytical methodology to quantify melamine in milk using micellar liquid chromatography and validation according to EU Regulation 2002/654/EC. Talanta 81:894–900. doi:10.1016/j.talanta.2010.01.034

    Article  CAS  Google Scholar 

  37. Roberts NB, Higgins G, Sargazi M (2010) A study on the stability of urinary free catecholamines and free methyl-derivatives at different pH, temperature and time of storage. Clin Chem Lab Med 48:81–87. doi:10.1515/CCLM.2010.017

    Article  CAS  Google Scholar 

  38. Esteve-Romero J, Carda-Broch S, Gil-Agustí M, Capella-Peiró ME, Bose D (2005) Micellar liquid chromatography for the determination of drug materials in pharmaceutical preparations and biological samples. TrAC Trends Anal Chem 24:75–91. doi:10.1016/j.trac.2004.11.003

    Article  CAS  Google Scholar 

  39. Gałuszka A, Migaszewski Z, Namiesnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84. doi:10.1016/j.trac.2013.04.010

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Project P1.1B2012-36 del Pla de Promoció de la Investigació de la Universitat Jaume I.

Compliance with Ethical Standards

Conflict of interest

The authors state that there is no financial/commercial conflict of interest.

Ethics and consent to participate

The sampling was anonymously performed with prior informed consent of patients and doctors. We were not informed about the identity or detailed healthy state of the patients to warrant confidentiality. These samples were only used for this study and the unprocessed portion of each sample was destroyed after finishing. The experimental results were not shared with other institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Peris-Vicente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, D.G., García, A.G., Peris-Vicente, J. et al. Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography. Anal Bioanal Chem 407, 9009–9018 (2015). https://doi.org/10.1007/s00216-015-9066-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9066-7

Keywords

Navigation