Skip to main content
Log in

Comparison of GC–NCI MS, GC–ICP-MS, and GC–EI MS–MS for the determination of PBDEs in water samples according to the Water Framework Directive

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The Water Framework Directive (WFD) includes some polybrominated diphenyl ethers (PBDEs) in the list of priority substances that must be measured in surface waters at very low concentrations. The typical approaches applied to the determination of PBDEs in environmental samples might not meet the demanding requirements of the WFD. In this work, the instrumental capabilities of the mass-spectrometry (MS) techniques most frequently used in the determination of PBDEs, namely gas chromatography–negative-chemical-ionisation MS (GC–NCI MS) and GC–electrospray-ionisation tandem MS (EI MS–MS), are evaluated in comparison with highly sensitive GC–inductively-coupled-plasma MS (ICP-MS) for the reliable determination of PBDEs according to the WFD. Three analytical methods based on the liquid–liquid extraction of water samples and measurement of the extracts by GC–NCI MS, GC–EI MS–MS, or GC–ICP-MS are described. The priority PBDEs were quantified in different types of water sample by means of isotope-dilution mass spectrometry (IDMS) using 81Br-labelled or 13C-labelled PBDEs spikes, depending on the selected ionisation source. The three proposed methods met the requirements of the European legislation in terms of LOQs and expanded uncertainties. The determination method using 81Br-labelled PBDEs and GC–ICP-MS had the highest sensitivity and the lowest instrumental limits of detection and expanded uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Communities L327:1–72

  2. Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November, establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC. Off J Eur Communities 2001:3–7

  3. Darnerud PO, Eriksen GS, Johannesson T, Larsen PB, Viluksela M, Jóhannesson T, Larsen PB, Viluksela M (2001) Polybrominated Diphenyl Ethers: Occurrence, Dietary Exposure, and Toxicology. Environ Health Perspect 109(Suppl 1):49. doi:10.2307/3434846

    Article  CAS  Google Scholar 

  4. Alaee M (2003) Recommendations for monitoring of polybrominated diphenyl ethers in the Canadian environment. Environ Monit Assess 88:327–341. doi:10.1023/A:1025533510331

    Article  CAS  Google Scholar 

  5. De Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere. doi:10.1016/S0045-6535(01)00225-9

    Google Scholar 

  6. Thuresson K, Björklund JA, de Wit CA (2012) Tri-decabrominated diphenyl ethers and hexabromocyclododecane in indoor air and dust from Stockholm microenvironments 1: levels and profiles. Sci Total Environ 414:713–721. doi:10.1016/j.scitotenv.2011.11.016

    Article  CAS  Google Scholar 

  7. Voorspoels S, Covaci A, Neels H, Schepens P (2007) Biomagnification of PBDEs in Three Small Terrestrial Food Chains. Environ Sci Technol 41:411–416. doi:10.1021/es061408k

    Article  CAS  Google Scholar 

  8. McDonald TA (2002) A perspective on the potential health risks of PBDEs. Chemosphere 46:745–755. doi:10.1016/S0045-6535(01)00239-9

    Article  CAS  Google Scholar 

  9. ATSDR (2004) Toxicological profile for polybrominated biphenyl and polybrominated diphenyl ethers. US Dep Heal Hum Serv 1–599

  10. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the field of water policy. Off J Eur Union L348:84–97

  11. Directive 2013/39/EU of the European Parliament and the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Communities 1–17

  12. Commission Directive 2009/90/EC of 31 July 2009 laying down, pursuant to Directive 200/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status. Off J Eur Union L201:36–38

  13. Lepom P, Brown B, Hanke G, Loos R, Quevauviller P, Wollgast J (2009) Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the European Water Framework Directive. J Chromatogr A 1216:302–315. doi:10.1016/j.chroma.2008.06.017

    Article  CAS  Google Scholar 

  14. Law RJ, Herzke D, Harrad S, Morris S, Bersuder P, Allchin CR (2008) Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere 73:223–241. doi:10.1016/j.chemosphere.2008.02.066

    Article  CAS  Google Scholar 

  15. González-Gago A, Brandsma SH, Leonards PEG, de Boer J, Marchante-Gayón JM, Garcia Alonso JI (2011) Determination of ultra-trace levels of priority PBDEs in water samples by isotope dilution GC(ECNI)MS using 81Br-labelled standards. Anal Bioanal Chem 401:2639–2649. doi:10.1007/s00216-011-5323-6

    Article  Google Scholar 

  16. Barco-Bonilla N, Plaza-Bolaños P, Tarifa NMV, Romero-González R, Vidal JLM, Frenich AG (2014) Highly sensitive determination of polybrominated diphenyl ethers in surface water by GC coupled to high-resolution MS according to the EU Water Directive 2008/105/EC. J Sep Sci 37:69–76. doi:10.1002/jssc.201300757

    Article  CAS  Google Scholar 

  17. Novak P, Zuliani T, Milačič R, Ščančar J (2014) Development of an analytical procedure for the determination of polybrominated diphenyl ethers in environmental water samples by GC-ICP-MS. Anal Chim Acta 827:64–73. doi:10.1016/j.aca.2014.04.020

    Article  CAS  Google Scholar 

  18. González-Gago A, Pröfrock D, Prange A (2014) Optimizing GC-ICP-MS for ultra-trace quantification of PBDEs in natural water samples using species-specific isotope dilution. J Anal At Spectrom 30:180–190

    Article  Google Scholar 

  19. Król S, Zabiegała B, Namieśnik J (2012) PBDEs in environmental samples: sampling and analysis. Talanta 93:1–17. doi:10.1016/j.talanta.2012.01.048

    Article  Google Scholar 

  20. Fulara I, Czaplicka M (2012) Methods for determination of polybrominated diphenyl ethers in environmental samples--review. J Sep Sci 35:2075–2087. doi:10.1002/jssc.201200100

    Article  CAS  Google Scholar 

  21. Covaci A, Voorspoels S, de Boer J (2003) Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples--a review. Environ Int 29:735–756. doi:10.1016/S0160-4120(03)00114-4

    Article  CAS  Google Scholar 

  22. Santos FJJ, Galceran MTT (2003) Modern developments in gas chromatography – mass spectrometry- based environmental analysis. J Chromatogr A 1000:125–151. doi:10.1016/S0021-9673(03)00305-4

    Article  CAS  Google Scholar 

  23. Labadie P, Tlili K, Alliot F, Bourges C, Desportes A, Chevreuil M (2010) Development of analytical procedures for trace-level determination of polybrominated diphenyl ethers and tetrabromobisphenol A in river water and sediment. Anal Bioanal Chem 396:865–875. doi:10.1007/s00216-009-3267-x

    Article  CAS  Google Scholar 

  24. Pitarch E, Medina C, Portolés T, López FJ, Hernández F (2007) Determination of priority organic micro-pollutants in water by gas chromatography coupled to triple quadrupole mass spectrometry. Anal Chim Acta 583:246–258. doi:10.1016/j.aca.2006.10.012

    Article  CAS  Google Scholar 

  25. Sánchez-Avila J, Fernandez-Sanjuan M, Vicente J, Lacorte S (2011) Development of a multi-residue method for the determination of organic micropollutants in water, sediment and mussels using gas chromatography-tandem mass spectrometry. J Chromatogr A 1218:6799–6811. doi:10.1016/j.chroma.2011.07.056

    Article  Google Scholar 

  26. Elordui-Zapatarietxe S, Fettig I, Philipp R, Gantois F, Lalère B, Swart C, Petrov P, Goenaga-Infante H, Vanermen G, Boom G, Emteborg H (2014) Novel concepts for preparation of reference materials as whole water samples for priority substances at nanogram-per-liter level using model suspended particulate matter and humic acids. Anal Bioanal Chem. doi:10.1007/s00216-014-8349-8

    Google Scholar 

  27. Meija J, Montes-Bayón M, Le Duc DL, Terry N, Caruso JA (2002) Simultaneous Monitoring of Volatile Selenium and Sulfur Species from Se Accumulating Plants (Wild Type and Genetically Modified) by GC/MS and GC/ICPMS Using Solid-Phase Microextraction for Sample Introduction. Anal Chem 74:5837–5844. doi:10.1021/ac020285t

    Article  CAS  Google Scholar 

  28. Björklund J, Tollbäck P, Hiärne C, Dyremark E, Östman C (2004) Influence of the injection technique and the column system on gas chromatographic determination of polybrominated diphenyl ethers. J Chromatogr A 1041:201–210. doi:10.1016/j.chroma.2004.04.025

    Article  Google Scholar 

  29. Mackintosh SA, Pérez-Fuentetaja A, Zimmerman LR, Pacepavicius G, Clapsadl M, Alaee M, Aga DS (2012) Analytical performance of a triple quadrupole mass spectrometer compared to a high resolution mass spectrometer for the analysis of polybrominated diphenyl ethers in fish. Anal Chim Acta 747:67–75. doi:10.1016/j.aca.2012.08.021

    Article  CAS  Google Scholar 

  30. Ackerman LK, Wilson GR, Simonich SL (2005) Quantitative Analysis of 39 Polybrominated Diphenyl Ethers by Isotope Dilution GC / Low-Resolution MS. Anal Chem 77:1979–1987

    Article  CAS  Google Scholar 

  31. Giese RW (2000) Electron – capture mass spectrometry: recent advances. J Chromatogr A 892:329–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union on the basis of Decision No 912/2009/EC within the context of an EMRP Research Grant, which was part of the EURAMET JRP ENV08 -Traceable measurements for monitoring critical pollutants under the European Water Framework Directive (WFD-2000/60/EC). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

The authors would also like to acknowledge Peter Planitz and Bernhard Rothweiler from Agilent Technologies (Waldbronn, Germany) for the help and the permission to use the GC–MS–MS at the Agilent application lab.

Declaration on conflict of interest

All authors certify that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pröfrock.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Gago, A., Pröfrock, D. & Prange, A. Comparison of GC–NCI MS, GC–ICP-MS, and GC–EI MS–MS for the determination of PBDEs in water samples according to the Water Framework Directive. Anal Bioanal Chem 407, 8009–8018 (2015). https://doi.org/10.1007/s00216-015-8973-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8973-y

Keywords

Navigation