Skip to main content
Log in

Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 30 December 2015

Abstract

In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nilsson GS, Gorton L, Bergquist K-E, Nilsson U (1996) Determination of the degree of branching in normal and amylopectin type potato starch with 1H-NMR spectroscopy improved resolution and two-dimensional spectroscopy. Starch-Stärke 48(10):352–357

    Article  CAS  Google Scholar 

  2. Fernandez C, Rojas C, Nilsson L (2011) Size, structure and scaling relationships in glycogen from various sources investigated with asymmetrical flow field-flow fractionation and 1H NMR. Int J Biol Macromol 49(4):458–465

    Article  CAS  Google Scholar 

  3. Perez-Rea D, Bergenståhl B, Nilsson L (2015) Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part I. Dissolution of amylopectin. Accepted for publication in Anal Bioanal Chem. doi:10.1007/s00216-015-8611-8

  4. Rojas C, Wahlund K-G, Br B, Nilsson L (2008) Macromolecular geometries determined with field-flow fractionation and their impact on the overlap concentration. Biomacromolecules 9(6):1684–1690

    Article  CAS  Google Scholar 

  5. Rolland-Sabaté A, Guilois S, Jaillais B, Colonna P (2011) Molecular size and mass distributions of native starches using complementary separation methods: asymmetrical flow field flow fractionation (A4F) and hydrodynamic and size exclusion chromatography (HDC-SEC). Anal Bioanal Chem 399(4):1493–1505

    Article  Google Scholar 

  6. Aberle T, Burchard W, Vorwerg W, Radosta S (1994) Conformational contributions of amylose and amylopectin to the structural properties of starches from various sources. Starch-Stärke 46(9):329–335

    Article  CAS  Google Scholar 

  7. Wahlund K-G, Leeman M, Santacruz S (2011) Size separations of starch of different botanical origin studied by asymmetrical-flow field-flow fractionation and multiangle light scattering. Anal Bioanal Chem 399(4):1455–1465

    Article  CAS  Google Scholar 

  8. Hizukuri S, J-i A, Hanashiro I (2006) In: Eliasson A-C (ed) Carbohydrate in food, 2nd edn. Taylor & Francis Group, Boca Ratón

    Google Scholar 

  9. Gidley MJ, Hanashiro I, Hani NM, Hill SE, Huber A, Jane J-L, Liu Q, Morris GA, Rolland-Sabaté A, Striegel AM, Gilbert RG (2010) Reliable measurements of the size distributions of starch molecules in solution: current dilemmas and recommendations. Carbohydr Polym 79(2):255–261

    Article  CAS  Google Scholar 

  10. Eliasson A-C, Gudmundsson M (2006) In: Eliasson A-C (ed) Carbohydrate in food, 2nd edn. Taylor & Francis Group, Boca Ratón

    Google Scholar 

  11. Colonna P, Mercier C (1985) Gelatinization and melting of maize and pea starches with normal and high-amylose genotypes. Phytochemistry 24(8):1667–1674

    Article  CAS  Google Scholar 

  12. Vorwerg W, Radosta S, Leibnitz E (2002) Study of a preparative-scale process for the production of amylose. Carbohydr Polym 47(2):181–189

    Article  CAS  Google Scholar 

  13. Han J-A, Lim S-T (2004) Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydr Polym 55(3):265–272

    Article  CAS  Google Scholar 

  14. Roger P, Baud B, Colonna P (2001) Characterization of starch polysaccharides by flow field-flow fractionation–multi-angle laser light scattering–differential refractometer index. J Chromatogr A 917(1–2):179–185

    Article  CAS  Google Scholar 

  15. van Bruijnsvoort M, Wahlund KG, Nilsson G, Kok WT (2001) Retention behaviour of amylopectins in asymmetrical flow field-flow fractionation studied by multi-angle light scattering detection. J Chromatogr A 925(1–2):171–182

    Article  Google Scholar 

  16. You S, Stevenson SG, Izydorczyk MS, Preston KR (2002) Separation and characterization of barley starch polymers by a flow field-flow fractionation technique in combination with multiangle light scattering and differential refractive index detection. Cereal Chem 79(5):624–630

    Article  CAS  Google Scholar 

  17. Rolland-Sabaté A, Colonna P, Mendez-Montealvo MG, Planchot V (2007) Branching features of amylopectins and glycogen determined by asymmetrical flow field flow fractionation coupled with multiangle laser light scattering. Biomacromolecules 8(8):2520–2532

    Article  Google Scholar 

  18. Juna S, Williams PA, Davies S (2011) Determination of molecular mass distribution of amylopectin using asymmetrical flow field-flow fractionation. Carbohydr Polym 83(3):1384–1396

    Article  CAS  Google Scholar 

  19. Fishman ML, Rodriguez L, Chau HK (1996) Molar masses and sizes of starches by high-performance size-exclusion chromatography with on-line multi-angle laser light scattering detection. J Agric Food Chem 44(10):3182–3188

    Article  CAS  Google Scholar 

  20. Bello-Pérez LA, Roger P, Baud B, Colonna P (1998) Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. J Cereal Sci 27(3):267–278

    Article  Google Scholar 

  21. Praznik W, Mundigler N, Kogler A, Pelzl B, Huber A, Wollendorfer M (1999) Molecular background of technological properties of selected starches. Starch-Stärke 51(6):197–211

    Article  CAS  Google Scholar 

  22. Radosta S, Haberer M, Vorwerg W (2001) Molecular characteristics of amylose and starch in dimethyl sulfoxide. Biomacromolecules 2(3):970–978

    Article  CAS  Google Scholar 

  23. Zhong F, Yokoyama W, Wang Q, Shoemaker CF (2006) Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents. J Agric Food Chem 54(6):2320–2326

    Article  CAS  Google Scholar 

  24. Roger P, Colonna P (1993) Evidence of the presence of large aggregates contaminating amylose solutions. Carbohydr Polym 21(2–3):83–89

    Article  CAS  Google Scholar 

  25. Roger P, Colonna P (1996) Molecular weight distribution of amylose fractions obtained by aqueous leaching of corn starch. Int J Biol Macromol 19(1):51–61

    Article  CAS  Google Scholar 

  26. Cave RA, Seabrook SA, Gidley MJ, Gilbert RG (2009) Characterization of starch by size-exclusion chromatography: the limitations imposed by shear scission. Biomacromolecules 10(8):2245–2253

    Article  CAS  Google Scholar 

  27. Kim W, Eum CH, Lim S, Han J, You S, Lee S (2007) Separation of amylose and amylopectin in corn starch using dual-programmed flow field-flow fractionation. Bull Korean Chem Soc 28(12):2489

    Article  CAS  Google Scholar 

  28. Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34(4):351–368

    Article  CAS  Google Scholar 

  29. Nilsson L (2012) In: Williams K, Caldwell K (eds) Field-flow fractionation in biopolymer analysis. Springer-Verlag/Wien, NewYork

    Google Scholar 

  30. Lee S, Nilsson P-O, Nilsson GS, Wahlund K-G (2003) Development of asymmetrical flow field-flow fractionation–multi angle laser light scattering analysis for molecular mass characterization of cationic potato amylopectin. J Chromatogr A 1011(1–2):111–123

    CAS  Google Scholar 

  31. Nilsson L (2013) Separation and characterization of food macromolecules using field-flow fractionation: A review. Food Hydrocoll 30(1):1–11

    Article  CAS  Google Scholar 

  32. Håkansson A, Magnusson E, Bergenståhl B, Nilsson L (2012) Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part I. A theoretical approach. J Chromatogr A 1253:120–126

    Article  Google Scholar 

  33. Leeman M, Wahlund K-G, Wittgren B (2006) Programmed cross flow asymmetrical flow field-flow fractionation for the size separation of pullulans and hydroxypropyl cellulose. J Chromatogr A 1134(1–2):236–245

    Article  CAS  Google Scholar 

  34. Berry GC (1966) Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J Chem Phys 44(12):4550–4564

    Article  CAS  Google Scholar 

  35. Andersson M, Wittgren B, Wahlund K-G (2003) Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments. Anal Chem 75(16):4279–4291

    Article  CAS  Google Scholar 

  36. Brandrup J, Immergut EH, Grulke EA (eds) (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  37. Nilsson L, Leeman M, Wahlund K-G, Bergenståhl B (2006) Mechanical degradation and changes in conformation of hydrophobically modified starch. Biomacromolecules 7(9):2671–2679

    Article  CAS  Google Scholar 

  38. Takeda Y, Hizukuri S, Juliano BO (1986) Purification and structure of amylose from rice starch. Carbohydr Res 148(2):299–308

    Article  CAS  Google Scholar 

  39. Roger P, Colonna P (1992) The influence of chain length on the hydrodynamic behaviour of amylose. Carbohydr Res 227:73–83

    Article  CAS  Google Scholar 

  40. Vilaplana F, Gilbert RG (2010) Two-dimensional size/branch length distributions of a branched polymer. Macromolecules 43(17):7321–7329

    Article  CAS  Google Scholar 

  41. Gidley MJ, Bulpin PV (1989) Aggregation of amylose in aqueous systems: the effect of chain length on phase behavior and aggregation kinetics. Macromolecules 22(1):341–346

    Article  CAS  Google Scholar 

  42. Gidley MJ, Bulpin PV (1987) Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohydr Res 161(2):291–300

    Article  CAS  Google Scholar 

  43. Hizukuri S, Takeda Y, Yasuda M, Suzuki A (1981) Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr Res 94(2):205–213

    Article  CAS  Google Scholar 

  44. Caldwell K (2000) In: Schimpf M, Caldwell K, Giddings JC (eds) Field-flow fractionation handbook. Wiley, New York

    Google Scholar 

  45. Sievert D, Wüsch P (1993) Amylose chain association based on differential scanning calorimetry. J Food Sci 58(6):1332–1335

    Article  CAS  Google Scholar 

  46. Jackson DS (1991) Solubility behavior of granular corn starches in methyl sulfoxide (DMSO) as measured by high performance size exclusion chromatography. Starch-Stärke 43(11):422–427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Swedish International Development Agency (Sida/SAREC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Nilsson.

Additional information

Published in the topical collection Field- and Flow-based Separations with guest editors Gaetane Lespes, Catia Contado, and Bruce Gale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Rea, D., Bergenståhl, B. & Nilsson, L. Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose. Anal Bioanal Chem 408, 1399–1412 (2016). https://doi.org/10.1007/s00216-015-8894-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8894-9

Keywords

Navigation