Skip to main content
Log in

Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 09 February 2019

This article has been updated

Abstract

In diabetes, the elevated levels of glucose in the bloodstream can result in the nonenzymatic glycation of proteins such as human serum albumin (HSA). This type of modification has been shown to affect the interactions of some drugs with HSA, including several sulfonylurea drugs that are used to treat type II diabetes. This study used high-performance affinity chromatography (HPAC) to examine the interactions of glipizide (i.e., a second-generation sulfonylurea drug) with normal HSA or HSA that contained various levels of in vitro glycation. Frontal analysis indicated that glipizide was interacting with both normal and glycated HSA through two general groups of sites: a set of relatively strong interactions and a set of weaker interactions with average association equilibrium constants at pH 7.4 and 37 °C in the range of 2.4–6.0 × 105 and 1.7–3.7 × 104 M−1, respectively. Zonal elution competition studies revealed that glipizide was interacting at both Sudlow sites I and II, which were estimated to have affinities of 3.2–3.9 × 105 and 1.1–1.4 × 104 M−1. Allosteric effects were also noted to occur for this drug between the tamoxifen site and the binding of R-warfarin at Sudlow site I. Up to an 18 % decrease in the affinity for glipizide was observed at Sudlow site I ongoing from normal HSA to glycated HSA, while up to a 27 % increase was noted at Sudlow site II. This information should be useful in indicating how HPAC can be used to investigate other drugs that have complex interactions with proteins. These results should also be valuable in providing a better understanding of how glycation may affect drug-protein interactions and the serum transport of drugs such as glipizide during diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 09 February 2019

    The authors would like to call the reader?s attention to the following corrections in this article. In the description given for the process of preparing glycated human serum albumin under ?In vitro glycation of HSA?, the concentrations of D-glucose that were employed were 15 mM and 30 mM.

  • 09 February 2019

    The authors would like to call the reader���s attention to the following corrections in this article. In the description given for the process of preparing glycated human serum albumin under ���In vitro glycation of HSA���, the concentrations of D-glucose that were employed were 15 mM and 30 mM.

  • 09 February 2019

    The authors would like to call the reader���s attention to the following corrections in this article. In the description given for the process of preparing glycated human serum albumin under ���In vitro glycation of HSA���, the concentrations of D-glucose that were employed were 15 mM and 30 mM.

References

  1. Centers for Disease Control and Prevention (2011) National diabetes fact sheet, 2011. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  2. International Diabetes Federation (2011) IDF diabetes atlas, 5th edn. International Diabetes Federation, Brussels, chap 2

    Google Scholar 

  3. Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM (2005) Arch Biochem Biophys 444:92–99

    Article  CAS  Google Scholar 

  4. Colmenarejo G (2003) Med Res Rev 23:275–301

    Article  CAS  Google Scholar 

  5. Koyama H, Sugioka N, Uno A, Mori S, Nakajima K (1997) Biopharm Drug Dispos 18:791–801

    Article  CAS  Google Scholar 

  6. Garlick RL, Mazer JS (1983) J Biol Chem 258:6142–6146

    CAS  Google Scholar 

  7. Iberg N, Fluckiger R (1986) J Biol Chem 261:13542–13545

    CAS  Google Scholar 

  8. Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T, Otagiri M (2003) Biochim Biophys Acta 1623:88–97

    Article  CAS  Google Scholar 

  9. Furusyo N, Hayashi J (2013) Biochim Biophys Acta 1830:5509–5514

    Article  CAS  Google Scholar 

  10. Anguizola J, Matsuda R, Barnaby OS, Joseph KS, Wa C, Debolt E, Koke M, Hage DS (2013) Clin Chim Acta 425:64–76

    Article  CAS  Google Scholar 

  11. Roohk HV, Zaidi AR (2008) J Diabetes Sci Technol 2:1114–1121

    Article  Google Scholar 

  12. Peters T Jr (1996) All about albumin: biochemistry, genetics and medical applications. Academic, San Diego

    Google Scholar 

  13. Clinical Guide to Laboratory Tests (1990) Tietz NW (ed) 2nd edn. Saunders, Philadelphia

  14. Otagiri M (2005) Drug Metab Pharmacokinet 20:309–323

    Article  CAS  Google Scholar 

  15. Curry S, Mandelkow H, Brick P, Franks N (1998) Nat Struct Biol 5:827–835

    Article  CAS  Google Scholar 

  16. Ascoli GA, Domenici E, Bertucci C (2006) Chirality 18:667–679

    Article  CAS  Google Scholar 

  17. Simard JR, Zunszain PA, Ha CE, Yang JS, Bhagavan NV, Petitpas I, Curry S, Hamilton JA (2005) Proc Natl Acad Sci U S A 102:17958–17963

    Article  CAS  Google Scholar 

  18. Sudlow G, Birkett J, Wade DN (1975) Mol Pharmacol 11:824–832

    CAS  Google Scholar 

  19. Sudlow G, Birkett J, Wade DN (1976) Mol Pharmacol 12:1052–1061

    CAS  Google Scholar 

  20. Loun B, Hage DS (1994) Anal Chem 66:3814–3822

    Article  CAS  Google Scholar 

  21. Yang J, Hage DS (1993) J Chromatogr 645:241–250

    Article  CAS  Google Scholar 

  22. Sengupta A, Hage DS (1999) J Chromatogr B 725:91–100

    Article  Google Scholar 

  23. Hage DS, Sengupta A (1998) Anal Chem 70:4602–4609

    Article  CAS  Google Scholar 

  24. Chen J, Hage DS (2006) Anal Chem 78:2672–2683

    Article  CAS  Google Scholar 

  25. Jakoby MG, Covey DF, Cistola DP (1995) Biochemistry 34:8780–8787

    Article  CAS  Google Scholar 

  26. Joseph KS, Hage DS (2010) J Chromatogr B 878:1590–1598

    Article  CAS  Google Scholar 

  27. Joseph KS, Anguizola J, Jackson AJ, Hage DS (2010) J Chromatogr B 878:2775–2781

    Article  CAS  Google Scholar 

  28. Joseph KS, Anguizola J, Hage DS (2011) J Pharm Biomed Anal 54:426–432

    Article  CAS  Google Scholar 

  29. Joseph KS, Hage DS (2010) J Pharm Biomed Anal 53:811–818

    Article  CAS  Google Scholar 

  30. Matsuda R, Anguizola J, Joseph KS, Hage DS (2011) Anal Bioanal Chem 401:2811–2819

    Article  CAS  Google Scholar 

  31. Matsuda R, Anguizola J, Joseph KS, Hage DS (2012) J Chromatogr A 1265:114–122

    Article  CAS  Google Scholar 

  32. Anguizola J, Joseph KS, Barnaby OS, Matsuda R, Alvarado G, Clarke W, Cerny RL, Hage DS (2013) Anal Chem 85:4453–4460

    Article  CAS  Google Scholar 

  33. Jackson AJ, Anguizola J, Pfaunmiller EL, Hage DS (2013) Anal Bioanal Chem 405:5833–5841

    Article  CAS  Google Scholar 

  34. Seeder N, Kanojia M (2009) Cent Eur J Chem 7:96–104

    Article  Google Scholar 

  35. Melander A (2004) Diabetes 53:S151–S155

    Article  CAS  Google Scholar 

  36. Tan Z, Zhang J, Wu J, Fang L, He Z (2009) AAPS PharmSciTech 10:967–976

    Article  CAS  Google Scholar 

  37. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR—hydrophobic, electronic, and steric constants. American Chemical Society, Washington

    Google Scholar 

  38. Wishart DS, Knox C, Guo A, Cheng D, Shrivastava S, Tzur D, Gautum B, Hassanali M (2008) Nucleic Acid Res 36:D901–D906

    Article  CAS  Google Scholar 

  39. Hage DS (2002) J Chromatogr B 768:3–30

    Article  CAS  Google Scholar 

  40. Patel S, Wainer IW, Lough WJ (2006) In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Boca Raton, CRC, chap 24

    Google Scholar 

  41. Hage DS, Anguizola J, Barnaby O, Jackson A, Yoo MJ, Papastavros E, Pfaunmiller E, Sobansky M, Tong Z (2011) Curr Drug Metab 12:313–328

    Article  CAS  Google Scholar 

  42. Lapolla A, Fedele D, Reitano R, Arico NC, Seraglia R, Traldi P, Marotta E, Tonani R (2004) J Am Soc Mass Spectrom 15:496–509

    Article  CAS  Google Scholar 

  43. Ney KA, Colley KJ, Pizzo SV (1981) Anal Biochem 118:294–300

    Article  CAS  Google Scholar 

  44. Pfaunmiller E, Moser AC, Hage DS (2012) Methods 56:130–135

    Article  CAS  Google Scholar 

  45. Walters RR (1982) J Chromatogr A 249:19–28

    Article  CAS  Google Scholar 

  46. Larson PO (1984) Methods Enzymol 104:212–223

    Google Scholar 

  47. Kim HS, Hage DS (2006) In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Boca Raton, CRC, chap 3

    Google Scholar 

  48. Wa C, Cerny RL, Hage DS (2006) Anal Chem 78:7967–7977

    Article  CAS  Google Scholar 

  49. Joseph KS, Moser AC, Basiaga S, Schiel JE, Hage DS (2009) J Chromatogr A 1216:3492–3500

    Article  CAS  Google Scholar 

  50. Yalkowsky SH, Dannenfelser RM (1992) Aquasol database of aqueous solubility, ver 5. University of Arizona, Tuscon

    Google Scholar 

  51. Teko IV, Thanchuk VY, Kasheva TN, Villa AE (2001) J Chem Inf Comput Sci 41:1488–1493

    Article  Google Scholar 

  52. Matsuda R, Anguizola J, Hoy KS, Hage DS (2014) Methods 1286:255–277

    Google Scholar 

  53. Conrad ML, Moser AC, Hage DS (2009) J Sep Sci 32:1145–1155

    Article  CAS  Google Scholar 

  54. Jamzad S, Rassihi R (2006) AAPS PharmSciTech 7:E17–E22

    Article  Google Scholar 

  55. Schiel JE, Joseph KS, Hage DS (2010) Biointeraction affinity chromatography. In: Grinsberg N, Grushka E (eds) Advances in chromatography. Taylor & Francis, New York, chap 4

    Google Scholar 

  56. Tweed SA (1997) Effects of heterogeneity on the characterization of chromatographic stationary phases. Ph.D. dissertation, University of Nebraska, Lincoln

  57. Crooks MJ, Brown KF (1974) J Pharm Pharmacol 26:304–311

    Article  CAS  Google Scholar 

  58. Barnaby OS, Cerny RL, Clarke W, Hage DS (2011) Clin Chim Acta 412:277–285

    Article  CAS  Google Scholar 

  59. Barnaby OS, Cerny RL, Clarke W, Hage DS (2011) Clin Chim Acta 412:1606–1615

    Article  CAS  Google Scholar 

  60. Sjoholm I (1986) In: Reindenberg MM, Erill S (eds) Drug-protein binding. Praeger, New York, chap 4

    Google Scholar 

  61. Sengupta A, Hage DS (1999) Anal Chem 17:3821–3827

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the NIH under grant R01 DK069629. R. Matsuda was supported under a fellowship through the Molecular Mechanisms of Disease program at the University of Nebraska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, R., Li, Z., Zheng, X. et al. Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography. Anal Bioanal Chem 407, 5309–5321 (2015). https://doi.org/10.1007/s00216-015-8688-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8688-0

Keywords

Navigation