Skip to main content
Log in

Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In 2011, the European Commission introduced new regulations on how nanomaterials are defined. Since then, researchers have emphasized that more complete characterization of nanoparticles (NPs) includes not just mass and size determinations, but also the determination of the particle number concentrations. In this study, two different sample introduction approaches for the analysis of NP suspensions with inductively coupled plasma mass spectrometry (ICP-MS) were investigated: pneumatic nebulization (sp-ICP-MS) and microdroplet generation (MDG-ICP-MS). These approaches were compared for the determination of particle number concentrations (PNCs) of gold and silver NP suspensions diluted in either ultra-pure water or citrate solution. For accurate sp-ICP-MS analysis, it is crucial to know the transport efficiency of nebulized sample into the plasma. Here, transport efficiencies, measured by the waste collection method, were 11–14 % for Ag suspensions and 9–11 % for Au. In contrast, the droplet transport efficiency of MDG-ICP-MS was 100 %. Analysis by sp-ICP-MS yielded a lower particle number concentration than expected (only 20–40 % of the expected value), whereas MDG-ICP-MS had NP recoveries up to 80 %. This study indicates that NP reference materials are of major importance for particle number determination and detailed results on particle number concentrations for different suspensions with respect to storage time are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alivisatos AP (2001) Less is more in medicine—sophisticated forms of nanotechnology will find some of their first real-world applications in biomedical research, disease diagnosis and, possibly, therapy. Sci Am 285(3):66–73

    Article  CAS  Google Scholar 

  2. Wise K, Brasuel M (2011) The current state of engineered nanomaterials in consumer goods and waste streams: the need to develop nanoproperty-quantifiable sensors for monitoring engineered nanomaterials. Nanotechnol Sci Appl 4(1):73–86

    CAS  Google Scholar 

  3. Nischwitz V, Goenaga-Infante H (2012) Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry. J Anal At Spectrom 27:1084–1092

    Article  CAS  Google Scholar 

  4. Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, Stark WJ (2009) In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomater 5(5):1775–1784

    Article  CAS  Google Scholar 

  5. Gowda SR, Leela Mohana Reddy A, Zhan X, Ajayan PM (2011) Building energy storage device on a single nanowire. Nano Lett 11(8):3329–3333

    Article  CAS  Google Scholar 

  6. Commission E (2011) Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial. vol 2011/696/EU. Off. J. Eur. Comm

  7. Laborda F, Bolea E, Jiménez-Lamana J (2013) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86(5):2270–2278

    Article  Google Scholar 

  8. HORIBA L (2014) Particle Characterization SZ-100. http://www.horiba.com/scientific/products/particle-characterization/education/sz-100/particle-size-by-dynamic-light-scattering-resources/choosing-concentration-for-dls-size-measurement/. Accessed 5 Dec 2014

  9. Bitea C, Walther C, Kim JI, Geckeis H, Rabung T, Scherbaum FJ, Cacuci DG (2003) Time-resolved observation of ZrO2-colloid agglomeration. Colloids Surf A 215(1–3):55–66

    Article  CAS  Google Scholar 

  10. Dudkiewicz A, Tiede K, Loeschner K, Jensen LHS, Jensen E, Wierzbicki R, Boxall ABA, Molhave K (2011) Characterization of nanomaterials in food by electron microscopy. TrAC Trends Anal Chem 30(1):28–43

    Article  CAS  Google Scholar 

  11. Gallego-Urrea JA, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem 30(3):473–483

    Article  CAS  Google Scholar 

  12. Degueldre C, Favarger PY (2003) Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf A 217(1–3):137–142

    Article  CAS  Google Scholar 

  13. Degueldre C, Favarger PY (2004) Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 62(5):1051–1054

    Article  CAS  Google Scholar 

  14. Degueldre C, Favarger PY, Bitea C (2004) Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry. Anal Chim Acta 518(1–2):137–142

    Article  CAS  Google Scholar 

  15. Degueldre C, Favarger PY, Rosse R, Wold S (2006) Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 68(3):623–628

    Article  CAS  Google Scholar 

  16. Degueldre C, Favarger PY, Wold S (2006) Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal Chim Acta 555(2):263–268

    Article  CAS  Google Scholar 

  17. Allabashi R, Stach W, de la Escosura-Muñiz A, Liste-Calleja L, Merkoçi A (2009) ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving. J Nanopart Res 11(8):2003–2011

    Article  CAS  Google Scholar 

  18. Hu S, Liu R, Zhang S, Huang Z, Xing Z, Zhang X (2009) A new strategy for highly sensitive immunoassay based on single-particle mode detection by inductively coupled plasma mass spectrometry. J Am Soc Mass Spectrom 20(6):1096–1103

    Article  CAS  Google Scholar 

  19. Krystek P, Ulrich A, Garcia CC, Manohar S, Ritsema R (2011) Application of plasma spectrometry for the analysis of engineered nanoparticles in suspensions and products. J Anal At Spectrom 26:1701–1721

    Article  CAS  Google Scholar 

  20. Laborda F, Jimenez-Lamana J, Bolea E, Castillo JR (2011) Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom 26(7):1362–1371

    Article  CAS  Google Scholar 

  21. Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins C, Ranville J (2012) Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J Anal At Spectrom 27:1131–1142

    Article  CAS  Google Scholar 

  22. Reed R, Higgins C, Westerhoff P, Tadjiki S, Ranville J (2012) Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J Anal At Spectrom 27:1093–1100

    Article  CAS  Google Scholar 

  23. Tuoriniemi J, Cornelis G, Hassellöv M (2012) Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem 84(9):3965–3972

    Article  CAS  Google Scholar 

  24. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2011) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83(24):9361–9369

    Article  CAS  Google Scholar 

  25. Garcia CC, Murtazin A, Groh S, Becker M, Niemax K (2010) Characterization of particles made by desolvation of monodisperse microdroplets of analyte solutions and particle suspensions for nanoparticle calibration in inductively coupled plasma spectrometry. Spectrochim Acta, Part B 65(1):80–85

    Article  Google Scholar 

  26. Garcia CC, Murtazin A, Groh S, Horvatic V, Niemax K (2010) Characterization of single Au and SiO2 nano- and microparticles by ICP-OES using monodisperse droplets of standard solutions for calibration. J Anal At Spectrom 25:645–653

    Article  CAS  Google Scholar 

  27. Murtazin A, Groh S, Niemax K (2010) Measurement of element mass distributions in particle ensembles applying ICP-OES. J Anal At Spectrom 25(9):1395–1401

    Article  CAS  Google Scholar 

  28. Gschwind S, Flamigni L, Koch J, Borovinskaya O, Groh S, Niemax K, Günther D (2011) Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets. J Anal At Spectrom 26(6):1166–1174

    Article  CAS  Google Scholar 

  29. Gschwind S, Hagendorfer H, Frick DA, Günther D (2013) Mass quantification of nanoparticles by single droplet calibration using inductively coupled plasma mass spectrometry. Anal Chem 85(12):5875–5883

    Article  CAS  Google Scholar 

  30. Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Günther D (2013) A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal At Spectrom 28(2):226–233

    Article  CAS  Google Scholar 

  31. Franze B, Strenge I, Engelhard C (2012) Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles. J. Anal. At. Spectrom. (27):1074-1083

  32. Shigeta K, Traub H, Panne U, Okino A, Rottmann L, Jakubowski N (2013) Application of a micro-droplet generator for an ICP-sector field mass spectrometer—optimization and analytical characterization. J Anal At Spectrom 28:646–656

    Article  CAS  Google Scholar 

  33. Chan GCY, Zhu Z, Hieftje GM (2012) Effect of single aerosol droplets on plasma impedance in the inductively coupled plasma. Spectrochim Acta, Part B 76:87–95

    Article  CAS  Google Scholar 

  34. Chan GCY, Zhu Z, Hieftje GM (2012) Operating parameters and observation modes for individual droplet analysis by inductively coupled plasma-atomic emission spectrometry. Spectrochim Acta, Part B 76:77–86

    Article  CAS  Google Scholar 

  35. Flamigni L, Koch J, Wiltsche H, Brogioli R, Gschwind S, Günther D (2012) Visualization, velocimetry, and mass spectrometric analysis of engineered and laser-produced particles passing through inductively coupled plasma sources. J Anal At Spectrom 27(4):619–625

    Article  CAS  Google Scholar 

  36. Olesik JW, Gray PJ (2012) Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J Anal At Spectrom 27:1143–1155

    Article  CAS  Google Scholar 

  37. Borovinskaya O, Aghaei M, Flamigni L, Hattendorf B, Tanner M, Bogaerts A, Günther D (2014) Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis. J Anal At Spectrom 29(2):262–271

    Article  CAS  Google Scholar 

  38. Koch J, Flamigni L, Gschwind S, Allner S, Longerich H, Günther D (2013) Accelerated evaporation of microdroplets at ambient conditions for the on-line analysis of nanoparticles by inductively-coupled plasma mass spectrometry. J Anal At Spectrom 28(11):1707–1717

    Article  CAS  Google Scholar 

  39. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled Environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  Google Scholar 

  40. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531

    Article  CAS  Google Scholar 

  41. Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, York, UK

    Google Scholar 

  42. Hagendorfer H, Kaegi R, Parlinska M, Sinnet B, Ludwig C, Ulrich A (2012) Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach—a comparison to transmission electron microscopy and batch dynamic light scattering. Anal Chem 84(6):2678–2685

    Article  CAS  Google Scholar 

  43. Rasband WS, U.S. National of Health, Bethesda, MA, USA, 1997–2012, http://imagej.nih.gov/ij/

  44. Gustavsson A (1984) The determination of some nebulizer characteristics. Spectrochim Acta, Part B 39(5):743–746

    Article  Google Scholar 

  45. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  46. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Frank Krummeich at the EMEZ (Electron Microscopy ETH Zurich) for SEM measurements. Financial support by ETH Zurich, Switzerland (ETH-4912-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Günther.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gschwind, S., Aja Montes, M.d.L. & Günther, D. Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration. Anal Bioanal Chem 407, 4035–4044 (2015). https://doi.org/10.1007/s00216-015-8620-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8620-7

Keywords

Navigation