Skip to main content
Log in

Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study

  • Rapid Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) spectra were obtained from urine samples from subjects diagnosed with prostate cancer as well as from healthy controls, using Au nanoparticles as substrates. Principal component analysis (PCA) of the spectral data, followed by linear discriminant analysis (LDA), leads to a classification model with a sensitivity of 100 %, a specificity of 89 %, and an overall diagnostic accuracy of 95 %. Even considering the very limited number of samples involved in this report, preliminary results from this approach are extremely promising, encouraging further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lumen N, Fonteyne V, De Meerleer G, De Visschere P, Ost P, Oosterlinck W, Villeirs G (2012) Screening and early diagnosis of prostate cancer: an update. Acta Clin Belg 67:270–275. doi:10.1179/ACB.67.4.2062671

    CAS  Google Scholar 

  2. Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW (2014) Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev 33:673–693. doi:10.1007/s10555-013-9489-6

    Article  CAS  Google Scholar 

  3. Li S, Zhang Y, Xu J, Li L, Zeng Q, Lin L, Guo Z, Liu Z, Xiong H, Liu S (2014) Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Appl Phys Lett 105:091104. doi:10.1063/1.4892667

    Article  Google Scholar 

  4. Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. John Wiley & Sons, Chichester

  5. Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton

  6. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. doi:10.1021/jp061667w

    Article  CAS  Google Scholar 

  7. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221. doi:10.1021/ac0702084

    Article  CAS  Google Scholar 

  8. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  9. Beleites C, Sergo V (2014) ‘hyperSpec: a package to handle hyperspectral data sets in R’, R package version 0.98, URL http://hyperspec.r-forge.r-project.org

  10. Liland KH, Mevik B-H (2015) Baseline: baseline correction of spectra. R package version 1.1-2. URL http://CRAN.R-project.org/package=baseline

  11. Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271. doi:10.1093/bioinformatics/bts447

    Article  CAS  Google Scholar 

  12. Venables WN, Ripley BD (2002) Modern applied statistics with S (4th ed.), Springer, New York

  13. Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, the R Core Team and Benesty M. (2014). Caret: classification and regression training. R package version 6.0-37. URL http://CRAN.R-project.org/package=caret

  14. Wang T-L, Chiang HK, Lu H-H, Peng F-Y (2005) Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples. Opt Quant Electron 37:1415–1422. doi:10.1007/s11082-005-4221-6

    Article  CAS  Google Scholar 

  15. Premasiri WR, Clarke RH, Womble ME (2001) Urine analysis by laser Raman spectroscopy. Lasers Surg Med 28:330–334. doi:10.1002/lsm.1058

    Article  CAS  Google Scholar 

  16. Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A, Colombatti A, Sergo V (2014) Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem 406:2355–2365. doi:10.1007/s00216-014-7622-1

    Article  CAS  Google Scholar 

  17. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS (2013) The human urine metabolome. PLoS ONE 8:e73076. doi:10.1371/journal.pone.0073076

    Article  CAS  Google Scholar 

  18. Hu P, Zheng X-S, Zong C, Li M-H, Zhang L-Y, Li W, Ren B (2014) Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J Raman Spectrosc 45:565–573. doi:10.1002/jrs.4499

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Sergio Lenarduzzi for coordinating sample collection at Policlinico San Giorgio (Pordenone, Italy). AB would like to thank C. Beleites for the useful discussions on LDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Bonifacio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Mistro, G., Cervo, S., Mansutti, E. et al. Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study. Anal Bioanal Chem 407, 3271–3275 (2015). https://doi.org/10.1007/s00216-015-8610-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8610-9

Keywords

Navigation