Skip to main content
Log in

Laser ablation-ICP-MS depth profiling to study ancient glass surface degradation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In general the analysis of archeological glass represents a challenge for a wide variety of objects because of the presence of physical and/or chemical damage on the surface of the artifact, also known as weathering or corrosion. To retrieve accurate bulk elemental information by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS), the original, pristine glass needs to be “reached”, thereby penetrating the alteration layer which is often more than 10 μm thick. To study this alteration layer the laser was operated in the drilling mode, either with a low (1 Hz) or a high (10 Hz) pulse repetition rate for a period of 50 s yielding detailed spatial information for ca. 20 elements over a shallow depth (ca. 5 μm) or less-detailed spatial information for 50–60 elements over a greater depth (ca. 50 μm). Quantitative elemental depth profiles (in wt%) were obtained with the so-called sum normalization calibration protocol, based on summation of the elements as their oxides to 100 wt%. We were able to associate the increase of SiO2 (in wt%) in the alteration layer to the volumetric mass density change in the glass as a result of depletion of Na2O and K2O. Also the interaction of the number of laser shots with the alteration layer is shown experimentally via depth measurements using profilometry. Chemical and physical changes in four ancient glass artifacts, directly and indirectly measureable by laser drilling, were studied as a function of internal and external factors such as age, composition, and exposure conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guillong M, Günther D (2001) Quasi ‘non-destructive’ laser ablation-inductively coupled plasma mass spectrometry fingerprinting of sapphires. Spectrochim Acta B 56:1219–1231

    Article  Google Scholar 

  2. Günther D, Horn I, Hattendorf B (2000) Recent trends and developments in laser ablation-ICP-mass spectrometry. Fresen J Anal Chem 368(1):45–51

    Article  Google Scholar 

  3. Günther D, Hattendorf B (2005) Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TrAC-Trends Anal Chem 24(3 SPEC. ISS):255–265

    Article  Google Scholar 

  4. Kuhn H-R (2005) Laser ablation ICP-MS: fundamental investigations on aerosols generated by laser ablation at ambient pressure. Swiss Federal Institute of Technology Zurich. Doctor of Natural Sciences:170

  5. Cagno S, Favaretto L, Mendera M, Izmer A, Vanhaecke F, Janssens K (2012) Evidence of early medieval soda ash glass in the archaeological site of San Genesio (Tuscany). J Archaeol Sci 39(5):1540–1552

    Article  CAS  Google Scholar 

  6. De Raedt I, Janssens K, Veeckman J, Vincze L, Vekemans B, Jeffries TE (2001) Trace analysis for distinguishing between Venetian and façon-de-Venise glass vessels of the 16th and 17th century. J Anal Atom Spectrom 16(9):1012–1017

    Article  Google Scholar 

  7. Dussubieux L, Golitko M, Ryan Williams P, Speakman RJ (2007) In Glascock MD, Speakman RJ, Popelka-Filcoff RS (Eds.) Archaeological chemistry, analytical techniques and archaeological interpretation 968:349–363

  8. Panighello S, Orsega EF, van Elteren JT, Šelih VS (2012) Analysis of polychrome Iron Age glass vessels from Mediterranean I, II and III groups by LA-ICP-MS. J Archaeol Sci 39(9):2945–2955

    Article  CAS  Google Scholar 

  9. Wagner B, Nowak A, Bulska E, Kunicki-Goldfinger J, Schalm O, Janssens K (2008) Complementary analysis of historical glass by scanning electron microscopy with energy dispersive X-ray spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Microchim Acta 162:415–424

    Article  CAS  Google Scholar 

  10. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179(C):300–308

    Article  CAS  Google Scholar 

  11. Dal Bianco B, Bertoncello R (2008) The development of growth rings on ancient glass surfaces: description and simulation of the weathering. J Non-Cryst Solids 354(2–9):773–779

    Article  CAS  Google Scholar 

  12. Newton RG (1985) Durability of Glass – a review. Glass Technol 26(1):21–38

    CAS  Google Scholar 

  13. Schreiner M (1991) Glass of the past: the degradation and deterioration of medieval glass artifacts. Microchim Acta 104(1–6):255–264

    Article  Google Scholar 

  14. Kunicki-Goldfinger JJ (2008) Unstable historic glass: symptoms, causes, mechanisms and conservation. Rev Conserv 9:47–60

    CAS  Google Scholar 

  15. Hench LL (1975) Characterization of glass corrosion and durability. J Non-Cryst Solids 19(C):27–39

    Article  CAS  Google Scholar 

  16. Dussubieux L, Robertshaw P, Glascock MD (2009) LA-ICP-MS analysis of African glass beads: laboratory inter-comparison with an emphasis on the impact of corrosion on data interpretation. Int J Mass Spectrom 284(1–3):152–161

    Article  CAS  Google Scholar 

  17. Gratuze B (2013) In: Janssens K (ed) Modern methods for analysing archaeological and historical glass, 1st edn. John Wiley & Sons, Ltd, Chichester, pp 201–234

    Chapter  Google Scholar 

  18. Van Elteren JT, Izmer A, Šala M, Orsega EF, Šelih VS, Panighello S, Vanhaecke F (2013) 3D laser ablation-ICP-mass spectrometry mapping for the study of surface layer phenomena-a case study for weathered glass. J Anal Atom Spectrom 28(7):994–1004

    Article  Google Scholar 

  19. Vicenzi EP, Eggins S, Logan A, Wysoczanski R (2002) Microbeam characterization of corning archeological reference glasses: new additions to the Smithsonian microbeam standard collection. J Res Natl Inst Stan 107(6):719–727

    Article  CAS  Google Scholar 

  20. Wagner B, Nowak A, Bulska E, Hametner K, Günther D (2012) Critical assessment of the elemental composition of Corning archeological reference glasses by LA-ICP-MS. Anal Bioanal Chem 402:1667–1677

    Article  CAS  Google Scholar 

  21. Van Elteren JT, Tennent NH, Šelih VS (2009) Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration. Anal Chim Acta 644(1–2):1–9

    Article  Google Scholar 

  22. Paul A (1997) Chemical durability of glasses; a thermodynamic approach. J Mater Sci 12:2246–2268

    Article  Google Scholar 

  23. Adams BP (1992) Ch.2. In: Clark DE, Zoitos BK (eds) Corrosion of glass, ceramics and ceramic superconductors: principles, testing, characterization and applications. Noyes Pubblications, Park Ridge, pp 29–50

    Google Scholar 

  24. Fluegel A (2007) Global model for calculating room-temperature glass density from the composition. J Am Ceram Soc 90(8):2622–2625

    Article  CAS  Google Scholar 

  25. Wang HAO, Grolimund D, Giesen C, Borca CN, Shaw-Stewart JRH, Bodenmiller B, Günther D (2013) Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85(21):10107–10116

    Article  CAS  Google Scholar 

  26. Van Malderen SJM, van Elteren JT, Vanhaecke F (2015) Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-μm scanning of layered materials. J Anal At Spectrom 30:119–125

    Article  Google Scholar 

  27. Koob SP (2006) Conservation and care of glass objects. Published by Archetype Publications in association with The Corning Museum of Glass, New York

  28. Jochum KP, Stoll B, Weis U, Jacob DE, Mertz-Kraus R, Andreae MO (2014) Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200 nm Femtosecond LA-ICP-MS: a comparison with nanosecond lasers. Geostand Geoanal Res. doi:10.1111/j.1751-908X.2014.12028.x

    Google Scholar 

  29. Woodhead J, Hellstrom J, Paton C, Hergt J, Grieg A, Maas R (2008) In laser ablation-ICP-MS in the earth sciences: current practices and outstanding issues. In: Sylvester PJ (Ed.). Mineral Association of Canada, Vancouver, B.C., pp. 135–145

  30. Mank AJG, Mason PRD (1999) A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples. J Anal Atom Spectrom 14:1143–1153

    Article  CAS  Google Scholar 

  31. Šelih VS, van Elteren JT (2011) Quantitative multi-element mapping of ancient glass using a simple and robust LA-ICP-MS rastering procedure in combination with image analysis. Anal Bioanal Chem 401(2):745–755

    Article  Google Scholar 

  32. Bertini M, Izmer A, Vanhaecke F, Krupp EV (2013) Critical evaluation of quantitative methods for the multi-elemental analysis of ancient glasses using laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 28:77–91

    Article  CAS  Google Scholar 

  33. Brill RH (1999) Chemical analyses of early glasses. The corning museum of glass. Corning, New York

    Google Scholar 

  34. Newton RG (1971) The enigma of the layered crusts on some weathered glasses, a chronological account of the investigations. Archaeometry 13:1–9

    Article  Google Scholar 

  35. Greiff S, Nallbani E (2008) When metal meets beads—technological study of early medieval metal foil beads from Albania. MEFRM: Mélanges L’École Fr Rome: Moyen-Âge 120/2:355–375

    Google Scholar 

  36. Sode T, Feveile C, Schnell U (2010) In: Begründet von Claus Dobiat und Klaus Leidorf Herausgegeben von Dobiat C, Ettel P, Fless F (Eds.) INTERNATIONALE ARCHÄOLOGIE - Studia honoraria - Band 31. Verlag Marie Leidorf GmbH, Rahden/Westf

  37. Brill RH (1975) Crizzling—a probem in glass conservation. Conservation in archaeology and the applied arts, Stockholm Congress, London, IIC: 121–134

  38. Newton R, Davison S (1989) Conservation of glass, 1st edn. Butterworths, London

    Google Scholar 

  39. Russo RE, Mao XL, Borisov OV, Liu HC (2000) Influence of wavelength on fractionation in laser ablation ICP-MS. J Anal At Spectrom 15(9):1115–1120

    Article  CAS  Google Scholar 

  40. Gonzalez J, Mao XL, Roy J, Mao SS, Russo RE (2002) Comparison of 193, 213 and 266 nm laser ablation ICP-MS. J Anal At Spectrom 17(9):1108–1113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Nicole Boivin and coworkers (Sealinks project) and Dr. Edward Pollard (British Institute in Eastern Africa) for making the African glass beads available, the Corning Museum of Glass (via Professor Norman Tennent) for providing the crizzled glass, Professor Elti Cattaruzza (University Ca’ Foscari of Venice, Italy) for optical surface profiling analysis, and Dr. Marilee Wood (University of the Witwatersrand, South Africa), Professor Peter Robertshaw (California State University, USA), and Stephen Koob (Corning Museum of Glass) for constructive discussions in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes T. Van Elteren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panighello, S., Van Elteren, J.T., Orsega, E.F. et al. Laser ablation-ICP-MS depth profiling to study ancient glass surface degradation. Anal Bioanal Chem 407, 3377–3391 (2015). https://doi.org/10.1007/s00216-015-8568-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8568-7

Keywords

Navigation