Skip to main content

Advertisement

Log in

Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A systematic investigation, based on highly spectrally resolved Raman spectroscopy, was undertaken to research the efficacy of vibrational assessments in locating chemical and crystallographic fingerprints for the characterization of dental caries and the early detection of non-cavitated carious lesions. Raman results published by other authors have indicated possible approaches for this method. However, they conspicuously lacked physical insight at the molecular scale and, thus, the rigor necessary to prove the efficacy of this spectroscopy method. After solving basic physical challenges in a companion paper, we apply them here in the form of newly developed Raman algorithms for practical dental research. Relevant differences in mineral crystallite (average) orientation and texture distribution were revealed for diseased enamel at different stages compared with healthy mineralized enamel. Clear spectroscopy features could be directly translated in terms of a rigorous and quantitative classification of crystallography and chemical characteristics of diseased enamel structures. The Raman procedure enabled us to trace back otherwise invisible characteristics in early caries, in the translucent zone (i.e., the advancing front of the disease) and in the body of lesion of cavitated caries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Murdoch-Kinch C, McLean M (2003) Minimally invasive dentistry. J Am Dent Assoc 134:87–95

    Article  Google Scholar 

  2. Bader J, Shugars D, Bonito A (2002) A systematic review of the performance of methods for identifying carious lesions. J Public Health Dent 62:201–213

    Article  Google Scholar 

  3. Schmuck BD, Carey CM (2010) Improved contact X-ray microradiographic method to measure mineral density of hard dental tissues. J Res Natl Inst Stand Technol 115:75–83

    Article  CAS  Google Scholar 

  4. Schneiderman A, Elbaum M, Schultz T, Keem S, Greenebaum M, Driller J (1997) Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTITM): in vitro study. Caries Res 31:103–110

    Article  CAS  Google Scholar 

  5. Lussi A, Megert B, Longbottom C, Reich E, Francescut P (2001) Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur J Oral Sci 109:14–19

    Article  CAS  Google Scholar 

  6. Ekstrand KR, Ricketts DNJ, Kidd EAM (1997) Reproducibility and accuracy of three methods for assessment of demineralization depth on the occlusal surface: an in vitro examination. Caries Res 31:224–231

    Article  CAS  Google Scholar 

  7. Bader J, Shugars D, Bonito A (2001) A systematic review of selected caries prevention and management methods. Comm Dent Oral Epidemiol 29:399–411

    Article  CAS  Google Scholar 

  8. Chai H, Lee JJ, Constantino PJ, Lucas PW, Lawn BR (2009) Remarkable resilience of teeth. Proc Natl Acad Sci 106:7289–7293

    Article  CAS  Google Scholar 

  9. Martin L (1985) Significance of enamel thickness in hominoid evolution. Nature 314:260–263

    Article  CAS  Google Scholar 

  10. Al-Jawad M, Addison O, Khan MA, James A, Hendriksz CJ (2012) Disruption of enamel crystal formation quantified by synchrotron microdiffraction. J Dent 40:1074–1080

    Article  CAS  Google Scholar 

  11. Ko AC-T, Choo-Smith L-P, Hewko M, Sowa MG, Dong CCS, Cleghorn B (2006) Detection of early dental caries using polarized Raman spectroscopy. Opt Express 14:203–215

    Article  CAS  Google Scholar 

  12. Pezzotti G, Zhu W, Boffelli M, Adachi T, Ichioka H, Yamamoto T, Marunaka Y, Kanamura N (2015) Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials:I, Theoretical foundations. Anal Bioanal Chem doi:10.1007/s00216-015-8472-1

  13. MATHEMATICA 70, Wolfram Research, Inc (Champaign, IL, USA)

  14. Krasse B (1988) Biological factors as indicators of future caries. Int Dent J 38:219–225

    CAS  Google Scholar 

  15. Zero DT (1995) In situ caries models. Adv Dent Res 9:214–230

    CAS  Google Scholar 

  16. Ten Cate JM, Duijsters PP (1982) Alternating demineralisation and remineralisation of artificial enamel lesions. Caries Res 16:201–210

    Article  Google Scholar 

  17. Featherstone JDB (1999) Prevention and reversal of dental caries: role of low level fluoride. Comm Dent Oral Epidemiol 27:31–40

    Article  CAS  Google Scholar 

  18. Dawes C (2003) What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 69:722–724

    Google Scholar 

  19. Cury JA, Andaló Tenuta LM (2009) Enamel remineralization: controlling the caries disease or treating early caries lesions? Braz Oral Res 23:23–30

    Article  Google Scholar 

  20. Edgar WM, Higham SM (1995) Role of saliva in caries models. Adv Dent Res 9:235–238

    CAS  Google Scholar 

  21. Featherstone JDB (2004) The continuum of dental caries – Evidence for a dynamic disease process. J Dent Res 83:C39–C42

    Article  Google Scholar 

  22. Robinson C, Shore RC, Brookes SJ, Strafford S, Wood SR, Kirkham J (2000) The chemistry of enamel caries. Crit Rev Oral Biol Med 11:481–495

    Article  CAS  Google Scholar 

  23. Robinson C, Weatherell IA, Hallsworth AS (1983) Alterations in the composition of permanent human enamel during carious attack. In: Leach SA, Edgar WM (eds) Demineralisation and remineralisation of the teeth. IRL Press, Oxford, UK, p 209

    Google Scholar 

  24. Tsuda H, Arends J (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites. J Dent Res 73:1703–1710

    CAS  Google Scholar 

  25. Calderín L, Dunfield D, Stott MJ (2005) Shell-model study of the lattice dynamics of hydroxyapatite. Phys Rev B 72:224304-1-12

  26. Pedone A, Corno M, Civalleri B, Malavasi G, Menziani MC, Segre U, Ugliengo P (2007) An ab initio parameterized interatomic force field for hydroxyapatite. J Mater Chem 17:2061–2068

    Article  CAS  Google Scholar 

  27. Rulis P, Ouyang L, Ching WY (2004) Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite. Phys Rev B 70:155104-1-8

  28. Elliott SR (1990) Physics of Amorphous Materials. Longman Scientific & Technical, Harlow, Essex, UK

    Google Scholar 

  29. Kittel C (1986) Introduction to Solid State Physics. Wiley & Sons, New York, US

    Google Scholar 

  30. Corno M, Busco C, Civalleri B, Ugliengo P (2006) Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Phys Chem Chem Phys 8:2464–2472

    Article  CAS  Google Scholar 

  31. Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposit of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age: I. Investigations in the v 4 PO4 3− domain. Calcif Tissue Int 46:384–394

    Article  CAS  Google Scholar 

  32. Shemesh A (1990) Crystallinity and diagenesis of sedimentary apatite. Geochim Cosmochim Acta 54:2433–2438

    Article  CAS  Google Scholar 

  33. Weiner Sand S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196

    Article  Google Scholar 

  34. Michel V, Ildefonse P, Morin G (1995) Chemical and structural changes in Cervus elaphus tooth enamels during fossilization (Lazaret cave): a combined IR and XRD Rietveld analysis. Appl Geochem 10:145–159

    Article  CAS  Google Scholar 

  35. Michel V, Ildefonse P, Morin G (1996) Assessment of archaeological bone and dentine preservation from Lazaret Cave (Middle Pleistocene) in France. Palaeogeogr Palaeoclimatol Palaeoecol 126:109–119

    Article  Google Scholar 

  36. Surovell TA, Stiner MC (2001) Standardizing infrared measures of bone mineral crystallinity: an experimental approach. J Archaeol Sci 28:633–642

    Article  Google Scholar 

  37. Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97

    Article  Google Scholar 

  38. Balan E, Delattre S, Roche D, Segalen L, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Brouder C, Salje EKH (2011) Line broadening effects in the powder infrared spectrum of apatite. Phys Chem Minerals 38:111–122

    Article  CAS  Google Scholar 

  39. Möller J, Poulsen S (1973) A standardized system for diagnosing recording and analyzing dental caries data. Scand J Dent Res 81:1–11

    Google Scholar 

  40. Gröndah HG, Hollender L, Malmcrona E, Sundquist B (1977) Dental caries and restorations in teenagers I Index and score system for radiographic studies of proximal surfaces. Swed Dent J 1:45–50

    Google Scholar 

  41. Liu J, Glasmacher UA, Lang M, Trautmann C, Voss KO, Neumann R, Wagner GA, Miletich R (2008) Appl Phys A 91:17–22

    Article  CAS  Google Scholar 

  42. Miro S, Costantini JM, Bardeau JF, Chateigner D, Suder F, Balanzat E (2011) Raman spectroscopy study of damage induced in fluorapatite by swift heavy ion irradiations. J Raman Spectrosc 42:2036–2041

    Article  CAS  Google Scholar 

  43. Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH (2002) Roughness parameters. J Mater Proc Technol 123:133–145

    Article  Google Scholar 

  44. Lan K, Jorgenson JW (2001) A hybrid of exponential and Gaussian functions as a simple model of asymmetric chromatographic peaks. J Chromatogr A 915:1–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pezzotti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, T., Pezzotti, G., Yamamoto, T. et al. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth. Anal Bioanal Chem 407, 3343–3356 (2015). https://doi.org/10.1007/s00216-015-8539-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8539-z

Keywords

Navigation