Skip to main content
Log in

Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) were optimised for the direct determination of gadolinium-based contrast agents in tap water. In comparison to our previous work, a new developed zwitterionic HILIC column (ZIC-cHILIC) was used for speciation of Gd-containing contrast agents. The limit of quantification (LOQ) for the five contrast agents Gd-BOPTA, Gd-DPTA-BMA, Gd-BT-DO3A, Gd-DOTA and Gd-DTPA are in the range of 5–12 ng Gd per litre. Additionally, a new internal standard, Pr-DOTA, was investigated to correct intensity drifts, minor and major changes in the sample volumes and possible matrix effects. With the speciation method described, tap water samples from the area of Berlin were analysed and for the first time, three Gd species, Gd-BT-DO3A, Gd-DOTA and Gd-BOPTA, were found in tap water samples at concentrations of about 10–20 ng Gd per litre. These are the same Gd species which have been previously detected predominantly in surface waters of the Berlin area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grobe TG, Dörning H, Schwartz FW (2011) BARMER GEK Arztreport 2011, Schwerpunkt: Bildgebende Diagnostik. Schriftrenreihe zur Gesundheitsanalyse, vol Band 6. ISEG, Institut für Sozialmedizin, Epidemiologie und Gesundheitssystemforschung, Hannover

  2. Idée J-M, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20(6):563–576. doi:10.1111/j.1472-8206.2006.00447.x

    Article  Google Scholar 

  3. Hermann P, Kotek J, Kubicek V, Lukes I (2008) Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans 23:3027–3047. doi:10.1039/B719704g

    Article  Google Scholar 

  4. Ersoy H, Rybicki FJ (2007) Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 26(5):1190–1197. doi:10.1002/Jmri.21135

    Article  Google Scholar 

  5. Telgmann L, Wehe CA, Birka M, Künnemeyer J, Nowak S, Sperling M, Karst U (2012) Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater. Environ Sci Technol 46(21):11929–11936. doi:10.1021/es301981z

    Article  CAS  Google Scholar 

  6. Möller P, Morteani G, Dulski P (2003) Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (Provinces Trento and Bolzano/Bozen, NE Italy). Acta Hydrochim Hydrobiol 31(3):225–239. doi:10.1002/aheh.200300492

    Article  Google Scholar 

  7. Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143(1–4):245–255

    Article  CAS  Google Scholar 

  8. Elbaz-Poulichet F, Seidel JL, Othoniel C (2002) Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of southern France. Water Res 36(4):1102–1105

    Article  CAS  Google Scholar 

  9. Morteani G, Moller P, Fuganti A, Paces T (2006) Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). Environ Geochem Health 28(3):257–264. doi:10.1007/s10653-006-9040-6

    Article  CAS  Google Scholar 

  10. Knappe A, Möller P, Dulski P, Pekdeger A (2005) Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Chem Erde 65:167–189

    Article  CAS  Google Scholar 

  11. Rabiet M, Togola A, Brissaud F, Seidel JL, Budzinski H, Elbaz-Poulichet F (2006) Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment. Environ Sci Technol 40(17):5282–5288. doi:10.1021/Es060528p

    Article  CAS  Google Scholar 

  12. Nozaki Y, Lerche D, Alibo DS, Tsutsumi M (2000) Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: evidence for anthropogenic Gd and In. Geochim Cosmochim Acta 64(23):3975–3982

    Article  CAS  Google Scholar 

  13. Zhu Y, Hoshino M, Yamada H, Itoh A, Haraguchi H (2004) Gadolinium anomaly in the distributions of rare earth elements observed for coastal seawater and river waters around Nagoya City. Bull Chem Soc Jpn 77(10):1835–1842. doi:10.1246/Bcsj.77.1835

    Article  CAS  Google Scholar 

  14. Verplanck PL, Taylor HE, Nordstrom DK, Barber LB (2005) Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environ Sci Technol 39(18):6923–6929. doi:10.1021/es048456u

    Article  CAS  Google Scholar 

  15. Kulaksiz S, Bau M (2007) Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth Planet Sci Lett 260(1–2):361–371. doi:10.1016/j.epsl.2007.06.016

    Article  CAS  Google Scholar 

  16. Lawrence MG, Jupiter SD, Kamber BS (2006) Aquatic geochemistry of the rare earth elements and yttrium in the Pioneer River catchment, Australia. Mar Freshw Res 57(7):725–736. doi:10.1071/Mf05229

    Article  CAS  Google Scholar 

  17. Hennebrüder K, Wennrich R, Mattusch J, Stärk H-J, Engewald W (2004) Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta 63(2):309–316

    Article  Google Scholar 

  18. Hemstrom P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29(12):1784–1821. doi:10.1002/jssc.200600199

    Article  Google Scholar 

  19. Künnemeyer J, Terborg L, Nowak S, Scheffer A, Telgmann L, Tokmak F, Günsel A, Wiesmüller G, Reichelt S, Karst U (2008) Speciation analysis of gadolinium-based MRI contrast agents in blood plasma by hydrophilic interaction chromatography/electrospray mass spectrometry. Anal Chem 80(21):8163–8170. doi:10.1021/ac801264j

    Article  Google Scholar 

  20. Künnemeyer J, Terborg L, Nowak S, Telgmann L, Tokmak F, Kramer BK, Günsel A, Wiesmüller GA, Waldeck J, Bremer C, Karst U (2009) Analysis of the contrast agent magnevist and its transmetalation products in blood plasma by capillary electrophoresis/electrospray ionization time-of-flight mass spectrometry. Anal Chem 81(9):3600–3607. doi:10.1021/Ac8027118

    Article  Google Scholar 

  21. Kunnemeyer J, Terborg L, Nowak S, Brauckmann C, Telgmann L, Albert A, Tokmak F, Kramer BK, Gunsel A, Wiesmuller GA, Karst U (2009) Quantification and excretion kinetics of a magnetic resonance imaging contrast agent by capillary electrophoresis-mass spectrometry. Electrophoresis 30(10):1766–1773. doi:10.1002/elps. 2008-00831

    Article  Google Scholar 

  22. Künnemeyer J, Terborg L, Meermann B, Brauckmann C, Möller I, Scheffer A, Karst U (2009) Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method. Environ Sci Technol 43(8):2884–2890

    Article  Google Scholar 

  23. Raju CSK, Cossmer A, Scharf H, Panne U, Lück D (2010) Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. J Anal At Spectrom 25(1):55–61

    Article  CAS  Google Scholar 

  24. Lindner U, Lingott J, Richter S, Jakubowski N, Panne U (2013) Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 405:1865–1873. doi:10.1007/s00216-012-6643-x

    Article  CAS  Google Scholar 

  25. Birka M, Wehe CA, Telgmann L, Sperling M, Karst U (2013) Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry. J Chromatogr A 1308:125–131. doi:10.1016/j.chroma.2013.08.017

    Article  CAS  Google Scholar 

  26. Kulaksız S, Bau M (2011) Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Appl Geochem 26(11):1877–1885. doi:10.1016/j.apgeochem.2011.06.011

    Article  Google Scholar 

  27. Idee JM, Port M, Medina C, Lancelot E, Fayoux E, Ballet S, Corot C (2008) Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology 248(2–3):77–88. doi:10.1016/j.tox.2008.03.012

    Article  CAS  Google Scholar 

  28. Bayer (2014) Product Monograph Magnevist. http://www.bayer.ca/files/magnevist-pm-en-07feb2014-170935.pdf

  29. Port M, Idee JM, Medina C, Robic C, Sabatou M, Corot C (2008) Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals 21(4):469–490. doi:10.1007/s10534-008-9135-x

    Article  CAS  Google Scholar 

  30. Baranyai Z, Palinkas Z, Uggeri F, Maiocchi A, Aime S, Brucher E (2012) Dissociation kinetics of open-chain and macrocyclic gadolinium(III)-aminopolycarboxylate complexes related to magnetic resonance imaging: catalytic effect of endogenous ligands. Chem Eur J 18(51):16426–16435. doi:10.1002/chem.201202930

    Article  CAS  Google Scholar 

  31. Kim YH, Kim KH (2012) Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis? Anal Chem 84(19):8284–8293. doi:10.1021/Ac301792x

    Article  CAS  Google Scholar 

  32. Benetollo F, Bombieri G, Calabi L, Aime S, Botta M (2003) Structural variations across the lanthanide series of macrocyclic DOTA complexes: insights into the design of contrast agents for magnetic resonance imaging. Inorg Chem 42(1):148–157. doi:10.1021/Ic025790n

    Article  CAS  Google Scholar 

  33. Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA (1991) Reaction of gadolinium chelates with endogenously available ions. Magn Reson Imaging 9(3):409–415. doi:10.1016/0730-725x(91)90429-P

    Article  CAS  Google Scholar 

  34. Sarka L, Burai L, Brucher E (2000) The rates of the exchange reactions between [Gd(DTPA)](2-) and the endogenous ions Cu2+, and Zn2+: a kinetic model for the prediction of the in vivo stability of [Gd(DTPA)](2-) used as a contrast agent in magnetic resonance imaging. Chem Eur J 6(4):719–724. doi:10.1002/(Sici)1521-3765(20000218)6:4<719::Aid-Chem719>3.0.Co;2-2

    Article  CAS  Google Scholar 

  35. Johannesson KH, Stetzenbach KJ, Hodge VF, Lyons WB (1996) Rare earth element complexation behavior in circumneutral pH groundwaters: assessing the role of carbonate and phosphate ions. Earth Planet Sci Lett 139(1–2):305–319. doi:10.1016/0012-821x(96)00016-7

    Article  CAS  Google Scholar 

  36. Kautenburger R, Beck HP (2007) Complexation studies with lanthanides and humic acid analyzed by ultrafiltration and capillary electrophoresis-inductively coupled plasma mass spectrometry. J Chromatogr A 1159(1–2):75–80. doi:10.1016/j.chroma.2007.03.092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Jakubowski.

Additional information

Published in the topical collection Spectrochemical Plasmas for Clinical and Biochemical Analysis with guest editors Alfredo Sanz-Medel and María Montes Bayón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindner, U., Lingott, J., Richter, S. et al. Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 407, 2415–2422 (2015). https://doi.org/10.1007/s00216-014-8368-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8368-5

Keywords

Navigation