Skip to main content
Log in

Validation of a quantitative method using liquid chromatography coupled to multiple mass spectrometry for thiouracil in feedstuffs used in animal husbandry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of thyreostatic drugs, like thiouracil (TU), in animal production has been banned for over three decades by the European Union, due to potential teratogenic and carcinogenic effects of its residues upon human consumption. Besides, thyreostats induce water retention in livestock, causing fallacious weight gain and deterioration of meat quality. Development of more competent analytical methods gave rise to sporadic TU detection in urine of untreated animals, questioning the actual synthetic origin TU. Research showed that TU can be formed upon digestion of Brassicaceae feeds in vivo and in vitro, which called for a means of differentiation between endogenous formation of TU and illicit administration. Therefore, in the present study, a routinely applicable liquid chromatography (LC) ion trap multiple mass spectrometry (MS2) method for TU analysis in animal feeds was optimised and validated, according to CD 2002/657/EC. A fractional factorial Plackett-Burman design was used to optimise the extraction procedure for TU from Brassicaceae and non-Brassicaceae feeds. This resulted in the discrimination of five influential factors (amount of feed, myrosinase, pH 7 buffer, 3-iodobenzyl bromide and elution solvent), for which the most optimal conditions were perfected. The limit of quantification for TU amounted 0.5 ng g−1. The individual recoveries for TU ranged between 90.9 and 99.7 %. Good results for repeatability and intra-laboratory reproducibility (RSD%) were observed, i.e. ≤6.0 and ≤5.2 %, respectively, for TU. Excellent linearity was proven based on determination coefficient (R 2 ≥ 0.99) and lack-of-fit test (F test, α = 0.05). Subsequently, a selection of feeds sampled during European national monitoring campaigns were evaluated with the present method showing concentrations ranging from 0.32 to 20.60 ng g−1, demonstrating the relevance of the method in the analysis of TU from animal feeds.

Validation of a quantitative method using liquid chromatography coupled to mass spectrometry for thiouracil in feedstuffs used in animal husbandry by J. A. L. Kiebooms, J. Wauters, J. Vanden Bussche, and L. Vanhaecke

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khera KS (1973) Ethylenethiourea—teratogenicity study in rats and rabbits. Teratology 7(3):243–252

    Article  CAS  Google Scholar 

  2. Martinez-Frias ML, Cereijo A, Rodriguezpinilla E, Urioste M (1992) Methimazole in animal feed and congenital aplasia cutis. Lancet 339(8795):742–743

    Article  CAS  Google Scholar 

  3. Eghbalian F (2007) Aplasia cutis congenita after methimazole exposure in utero; a case report and literature review. Iran J Pediatr 17(3):293–296

    Google Scholar 

  4. International Agency for Research on Cancer (2010) IARC monographs on the evaluation of carcinogenic risks to humans. Available online on: http://monographs.iarc.fr/ENG/Classification/index.php

  5. European Community (1981) Council Directive 81/602/EC. Off J Euro Comm L 222:32–33

    Google Scholar 

  6. Pinel G, Maume D, Deceuninck Y, Andre F, Le Bizec B (2006) Unambiguous identification of thiouracil residue in urine collected in non-treated bovine by tandem and high-resolution mass spectrometry. Rapid Comm Mass Spec 20(21):3183–3187

    Article  CAS  Google Scholar 

  7. Vanden Bussche J, Vanhaecke L, Deceuninck Y, Wille K, Bekaert K, Le Bizec B, De Brabander HF (2011) Ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry detection of naturally occurring thiouracil in urine of untreated livestock, domesticated animals and humans. Food Add Contam 28:166–172

    Article  CAS  Google Scholar 

  8. European Food Safety Authority (2010) Report for 2008 on the results from the monitoring of veterinary medicinal product residues and other substances in food of animal origin in the Member States. EFSA J 8:1559. doi:10.2903/j.efsa.2010.1559

    Google Scholar 

  9. Pinel G, Bichon E, Pouponneau K, Maume D, Andre F, Le Bizec B (2005) Multi-residue method for the determination of thyreostats in urine samples using liquid chromatography coupled to tandem mass spectrometry after derivatisation with 3-iodobenzylbromide. J Chrom A 1085(2):247–252

    Article  CAS  Google Scholar 

  10. Lõhmus M, Kallaste K, Le Bizec B (2009) Determination of thyreostats in urine and thyroid gland by ultra high performance liquid chromatography tandem mass spectrometry. J Chrom A 1216(46):8080–8089

    Article  Google Scholar 

  11. Vanden Bussche J, Vanhaecke L, Deceuninck Y, Verheyden K, Wille K, Bekaert K, Le Bizec B, De Brabander HF (2010) Development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry method for quantifying thyreostats in urine without derivatisation. J Chrom A 1217(26):4285–4293

    Article  CAS  Google Scholar 

  12. Pinel G, Mathieu S, Cesbron N, Maume D, De Brabander HF, Andre F, Le Bizec B (2006) Evidence that urinary excretion of thiouracil in adult bovine submitted to a cruciferous diet can give erroneous indications of the possible illegal use of thyrostats in meat production. Food Add Contam 23(10):974–980

    Article  CAS  Google Scholar 

  13. European Union Reference Laboratories (2007) EURL guidance document. Available online on: http://www.rivm.nl/bibliotheek/digitaaldepot/crlguidance2007.pdf

  14. Zhou CH, Tokuhisa JG, Bevan DR, Esen A (2012) Properties of beta-thioglucoside hydrolases (TGG1 and TGG2) from leaves of Arabidopsis thaliana. Plant Sci 191:82–92

    Article  Google Scholar 

  15. Vanden Bussche J, Kiebooms JAL, De Clercq N, Deceuninck Y, Le Bizec B, De Brabander HF, Vanhaecke L (2011) Feed or food responsible for the presence of low-level thiouracil in urine of livestock and humans? J Agr Food Chem 59(10):5786–5792

    Article  CAS  Google Scholar 

  16. Krul C, Humblot C, Philippe C, Vermeulen M, van Nuenen M, Havenaar R, Rabot S (2002) Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23(6):1009–1016

    Article  CAS  Google Scholar 

  17. Cheng DL, Hashimoto K, Uda Y (2004) In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem Toxicol 42(3):351–357

    Article  CAS  Google Scholar 

  18. Tripathi MK, Mishra AS (2007) Glucosinolates in animal nutrition: a review. Anim Feed Sci Tech 132(1–2):1–27

    Article  CAS  Google Scholar 

  19. Kiebooms JAL, Vanden Bussche J, Hemeryck LY, Fievez V, Vanhaecke L (2012) Intestinal microbiota contribute to the endogenous formation of thiouracil in livestock. J Agr Food Chem 60(32):7769–7776

    Article  CAS  Google Scholar 

  20. Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97(1):194–208

    Article  CAS  Google Scholar 

  21. Rosa EAS, Rodrigues AS (2001) Total and individual glucosinolate content in 11 broccoli cultivars grown in early and late seasons. Hortscience 36(1):56–59

    CAS  Google Scholar 

  22. Wallig MA, Belyea RL, Tumbleson ME (2002) Effect of pelleting on glucosinolate content of Crambe meal. Anim Feed Sci Tech 99(1–4):205–214

    Article  CAS  Google Scholar 

  23. Van Doorn HE, van der Kruk GC, van Holst GJ, Raaijmakers-Ruijs NCME, Postma E, Groeneweg B, Jongen WHF (1998) The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of Brussels sprouts. Anim Feed Sci Tech 78(1):30–38

    Google Scholar 

  24. Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agr 80(7):967–984

    Article  CAS  Google Scholar 

  25. Tanii H, Takayasu T, Higashi T, Leng S, Saijoh K (2004) Allylnitrile: generation from cruciferous vegetables and behavioral effects on mice of repeated exposure. Food Chem Toxicol 42(3):453–458

    Article  CAS  Google Scholar 

  26. Schöne F, Winnefeld K, Kirchner E, Grun M, Ludke H, Hennig A (1990) Copper and iodine in pig diets with high glucosinolate rapeseed meal. 3. Treatment of rapeseed meal with copper, and the effect of iodine supplementation on trace-element status and some related blood (serum) parameters. Anim Feed Sci Tech 30(1–2):143–154

    Article  Google Scholar 

  27. Burel C, Boujard T, Escaffre AM, Kaushik SJ, Boeuf G, Mol KA, Van der Geyten S, Kuhn ER (2000) Dietary low-glucosinolate rapeseed meal affects thyroid status and nutrient utilization in rainbow trout (Oncorhynchus mykiss). Brit J Nutr 83(6):653–664

    Article  CAS  Google Scholar 

  28. Tripathi MK, Agrawal IS, Sharma SD, Mishra DP (2001) Effect of substitution of soybean meal with treated or untreated high glucosinolate mustard (Brassica juncea) meal on intake, digestibility, growth performance and body composition of calves. Anim Feed Sci Tech 94(3–4):137–146

    Article  CAS  Google Scholar 

  29. Zang XP, Tanii H, Kobayashi K, Higashi T, Oka R, Koshino Y, Saijoh K (1999) Behavioral abnormalities and apoptotic changes in neurons in mice brain following a single administration of allylnitrile. Arch Toxicol 73(1):22–32

    Article  CAS  Google Scholar 

  30. Ahlin KA, Emanuelson M, Wiktorsson H (1994) Rapeseed products from double-low cultivars as feed for dairy cows—effects of long-term feeding on thyroid-function, fertility and animal health. Acta Vet Scand 35(1):37–53

    CAS  Google Scholar 

  31. Zukalova H, Vasak J (2002) The role and effects of glucosinolates of Brassica species—a review. Rost Vyroba 48(4):175–180

    CAS  Google Scholar 

  32. European Community (2003) Commission Regulation (EC) No 1035/2003. Off J Euro Comm L 150:24–25

    Google Scholar 

  33. European Community (2002) Commissions Decision 2002/657/EC. Off J Euro Comm L 221:8–36

    Google Scholar 

  34. Box GE, Hunter JS (1961) 2 k-P fractional factorial designs part I. Technometrics 3(3):311–351

    Google Scholar 

  35. Yu GYF, Murby EJ, Wells RJ (1997) Gas chromatographic determination of residues of thyreostatic drugs in bovine muscle tissue using combined resin mediated methylation and extraction. J Chrom B 703(1–2):159–166

    Article  CAS  Google Scholar 

  36. Blanchflower WJ, Hughes PJ, Cannavan A, McCoy MA, Kennedy DG (1997) Determination of thyreostats in thyroid and urine using high-performance liquid chromatography atmospheric pressure chemical ionisation mass spectrometry. Analyst 122(9):967–972

    Article  CAS  Google Scholar 

  37. Buick RK, Barry C, Traynor IM, McCaughey WJ, Elliott CT (1998) Determination of thyreostat residues from bovine matrices using high-performance liquid chromatography. J Chrom B 720(1–2):71–79

    Article  CAS  Google Scholar 

  38. Pensabene JW, Lehotay SJ, Fiddler W (2001) Method for the analysis of thyreostats in meat tissue using gas chromatography with nitrogen phosphorus detection and tandem mass spectrometric confirmation. J Chromatogr Sci 39(5):195–199

    Article  CAS  Google Scholar 

  39. Asea PE, MacNeil JD, Boison JO (2006) An analytical method to screen for six thyreostatic drug residues in the thyroid gland and muscle tissues of food producing animals by liquid chromatography with ultraviolet absorption detection and liquid chromatography/mass spectrometry. J AOAC Int 89(2):567–575

    CAS  Google Scholar 

  40. Broekaert N, Van Peteghem C, Daeseleire E, Sticker D, Van Poucke C (2011) Development and validation of an UPLC-MS/MS method for the determination of ionophoric and synthetic coccidiostats in vegetables. Anal Bioanal Chem 401(10):3335–3344

    Article  CAS  Google Scholar 

  41. Wrede F (1941) Die Methoden der Fermentforschung, Georg Thieme, Leipzig, Bd2, 1835

  42. De Brabander HF, Verbeke R (1982) Determination of oxazolidine-2-thiones in biological fluids in the ppb range. J Chrom A 252:225–239

    Article  Google Scholar 

  43. Pollet B, Vanhaecke L, Dambre P, Lootens P, Steppe K (2011) Low night temperature acclimation of Phalaenopsis. Plant Cell Rep 30(6):1125–1134

    Article  CAS  Google Scholar 

  44. Palmieri S, Leoni O, Iori R (1982) A steady-state kinetics study of myrosinase with direct ultraviolet spectrophotometric assay. Anal Biochem 123(2):320–324

    Article  CAS  Google Scholar 

  45. Shen JZ, Zhang SX, Wu CM, Jiang HY, Wang ZH, Cheng LL (2010) Determination of six resorcylic acid lactones in feed by GC-MS. Chromatographia 71(1–2):163–165

    Article  CAS  Google Scholar 

  46. Wang WY, Zhang YL, Wang JY, Shi X, Ye JN (2010) Determination of beta-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Sci 85(2):302–305

    Article  CAS  Google Scholar 

  47. Ying YF, Wu YL, Wen Y, Yang T, Xu XQ, Wang YZ (2013) Simultaneous determination of six resorcylic acid lactones in feed using liquid chromatography-tandem mass spectrometry and multi-walled carbon nanotubes as a dispersive solid phase extraction sorbent. J Chrom A 1307:41–48

    Article  CAS  Google Scholar 

  48. Karnes HT, March C (1991) Calibration and validation of linearity in chromatographic biopharmaceutical analysis. J Pharm Biomed 9(10–12):911–918

    Article  CAS  Google Scholar 

  49. Youssef YA, Beauchamp Y, Thomas M (1994) Comparison of a full factorial experiment to fractional and Taguchi designs in a lathe dry turning operation. Comput Ind Eng 27(1–4):59–62

    Article  Google Scholar 

  50. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  51. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2008) Multi- and megavariate data analysis. Principles and applications. Umetrics Academy, Umea

    Google Scholar 

  52. Beres DL, Hawkins DM (2001) Plackett-Burman techniques for sensitivity analysis of many-parametered models. Ecol Model 141(1–3):171–183

    Article  Google Scholar 

  53. Jia JS, Deng HB, Duan J, Zhao JZ (2009) Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method—a case study in Henan Province. China Ecol Econ 68(11):2818–2824

    Article  Google Scholar 

  54. Esteve-Romero J, Escrig-Tena I, Simo-Alfonso EF, Ramis-Ramos G (1999) Determination of thyreostatics in animal feed by micellar electrokinetic chromatography. Analyst 124(2):125–128

    Article  CAS  Google Scholar 

  55. Perez-Ruiz T, Martinez-Lozano C, Sanz A, Galera R (2005) An ultrasensitive method for the determination of thiouracil and phenylthiouracil using capillary zone electrophoresis and laser-induced fluorescence detection. Electrophoresis 26(12):2384–2390

    Article  CAS  Google Scholar 

  56. Kong DX, Chi YW, Chen LC, Dong YQ, Zhang L, Chen GN (2009) Determination of thyreostatics in animal feeds by CE with electrochemical detector. Electrophoresis 30(19):3489–3495

    Article  CAS  Google Scholar 

  57. Woźniak B, Witek S, Matraszek-Żuchowska I, Żmudzki J (2014) Determination of the thyreostats in animal feeding stuffs using liquid chromatography-tandem mass spectrometry. Bull Vet Inst Pulawy 58(3):413–419

    Google Scholar 

  58. Arioli F, Gavinelli MP, Fracchiolla ML, Casati A, Fidani M, Ferrer E, Pompa G (2008) Evaluation of boldenone formation and related steroids transformations in veal faeces by liquid chromatography/tandem mass spectrometry. Rapid Comm Mass Spec 22(2):217–223

    Article  CAS  Google Scholar 

  59. McCarrison R (1933) The goitrogenic action of soybean and groundnut. Indian J Med Res 21:179

    Google Scholar 

  60. Velasco P, Soengas P, Vilar M, Cartea ME, del Rio M (2008) Comparison of glucosinolate profiles in leaf and seed tissues of different Brassica napus crops. J Am Soc Horticult Sci 133(4):551–558

    Google Scholar 

  61. European Union Reference Laboratories (2014) EURL reflection paper. Not yet published online (http://www.wageningenur.nl/nl/Publicatie-details.htm?publicationId=publication-way-343536373039)

Download references

Acknowledgments

The authors would like to thank J. Goedgebueur and D. Stockx for their technical support as well as Tierenteyn (Deinze, Belgium) for the supplying of mustard seeds. We are also thankful to the Irish Department of Agriculture, Food and the Marine, Veterinary Medicines division, Backweston Campus (Celbridge, Co. Kildare, Ireland), for their collaboration and supply of animal feeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Vanhaecke.

Additional information

Published in the topical collection on Hormone and Veterinary Drug Residue Analysis with guest editors Siska Croubels, Els Daeseleire, Sarah De Saeger, Peter Van Eenoo, and Lynn Vanhaecke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiebooms, J.A.L., Wauters, J., Vanden Bussche, J. et al. Validation of a quantitative method using liquid chromatography coupled to multiple mass spectrometry for thiouracil in feedstuffs used in animal husbandry. Anal Bioanal Chem 407, 4373–4384 (2015). https://doi.org/10.1007/s00216-014-8347-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8347-x

Keywords

Navigation