Skip to main content
Log in

Effect of different glycation agents on Cu(II) binding to human serum albumin, studied by liquid chromatography, nitrogen microwave-plasma atomic-emission spectrometry, inductively-coupled-plasma mass spectrometry, and high-resolution molecular-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The ability of human serum albumin to capture unbound copper under different clinical conditions is an important variable potentially affecting homeostasis of this element. Here, we propose a simple procedure based on size-exclusion chromatography with on-line UV and nitrogen microwave-plasma atomic-emission spectrometry (MP-AES) for quantitative evaluation of Cu(II) binding to HSA upon its glycation in vitro. The Cu-to-protein molar ratio for non-glycated albumin was 0.98 ± 0.09; for HSA modified with glyoxal (GO), methylglyoxal (MGO), oxoacetic acid (GA), and glucose (Glc), the ratios were 1.30 ± 0.22, 0.72 ± 0.14, 0.50 ± 0.06, and 0.95 ± 0.12, respectively. The results were confirmed by using ICP-MS as an alternative detection system. A reduced ability of glycated protein to coordinate Cu(II) was associated with alteration of the N-terminal metal-binding site during incubation with MGO and GA. In contrast, glycation with GO seemed to generate new binding sites as a result of tertiary structural changes in HSA. Capillary reversed-phase liquid chromatography with electrospray-ionization quadrupole-time-of-flight tandem mass spectrometry enabled detection and identification of Cu(II) coordinated to the N-terminal metal-binding site (Cu(II)–DAHK) in all tryptic digests analyzed. This is the first report confirming Cu(II)–DAHK species in HSA by means of high-resolution tandem mass spectrometry, and the first report on the use of MP-AES in combination with chromatographic separation.

General scheme designed to study Cu(II) binding to glycated versus non-glycated albumin and MPAESinstrumentation used

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cooper GJ (2012) Selective divalent copper chelation for the treatment of diabetes mellitus. Curr Med Chem 19:2828–2860

    Article  CAS  Google Scholar 

  2. Rodriguez Flores C, Preciado Puga M, Wrobel K, Garay Sevilla ME, Wrobek K (2011) Trace element status in diabetes mellitus 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res Clin Pract 91:333–341

    Article  Google Scholar 

  3. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  4. Meyer JA, Spence DM (2009) A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 1:32–49

    Article  CAS  Google Scholar 

  5. Tanaka A, Kaneto H, Miyatsuka T, Yamamoto K, Yoshiuchi K et al (2009) Role of copper ion in the pathogenesis of type 2 diabetes. Endocr J 56:699–706

    Article  CAS  Google Scholar 

  6. Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensinc D et al (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685

    Article  CAS  Google Scholar 

  7. Taverna M, Marie AL, Mira JP, Guidet B (2013) Specific antioxidant properties of human serum albumin. Ann Intensive Care 3:1–7

    Article  Google Scholar 

  8. Argirova MD, Ortwerth BJ (2003) Activation of protein-bound copper ions during early glycation: study on two proteins. Arch Biochem Biophys 420:176–184

    Article  CAS  Google Scholar 

  9. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  CAS  Google Scholar 

  10. Bal W, Sokołowska M, Kurowska E, Faller P (2013) Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta 1830:5444–5455

    Article  CAS  Google Scholar 

  11. Rondeau P, Singh NR, Caillens H, Tallet F, Bourdon E (2008) Oxidative stresses induced by glycoxidized human or bovine serum albumin on human monocytes. Free Radic Biol Med 45:799–812

    Article  CAS  Google Scholar 

  12. Guerin-Dubourg A, Catan A, Bourdon E, Rondeau P (2012) Structural modifications of human albumin in diabetes. Diabetes Metab 38:171–178

    Article  CAS  Google Scholar 

  13. Zhang S, Liu H, Amarsingh GV, Cheung CCH, Hogl S et al (2014) Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol 13:100–118

    Article  Google Scholar 

  14. Baraka-Vidot J, Navarra G, Leone M, Bourdon E, Militello V et al (2014) Deciphering metal-induced oxidative damages on glycated albumin structure and function. Biochim Biophys Acta 1840:1712–1724

    Article  CAS  Google Scholar 

  15. Bettmer J, Bayon MM, Encinar JR, Sanchez MLF, de la Campa MDF et al (2009) The emerging role of ICP–MS in proteomic analysis. J Proteome 72:989–1005

    Article  CAS  Google Scholar 

  16. Manley SA, Byrns S, Lyon AW, Brown P, Gailer J (2009) Simultaneous Cu-, Fe-, and Zn-specific detection of metalloproteins contained in rabbit plasma by size-exclusion chromatography-inductively coupled plasma atomic emission spectroscopy. J Biol Inorg Chem 14:61–74

    Article  CAS  Google Scholar 

  17. Jin Q, Zhu C, Borer MW, Hieftje GM (1991) A microwave plasma torch assembly for atomic emission spectrometry. Spectrochim Acta B 46:417–430

    Article  Google Scholar 

  18. Sadi BB, Wrobel K, Kannamkumarath SS, Castillo JR, Caruso JA (2002) SEC-ICP-MS studies for elements binding to different molecular weight fractions of humic substances in compost extract obtained from urban solid waste. J Environ Monit 4:1010–1016

    Article  CAS  Google Scholar 

  19. El Balkhi S, Poupon JI, Trocello JM, Massicot F, Woimant F et al (2010) Human plasma copper proteins speciation by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. Solutions for columns calibration by sulfur detection. Anal Chem 82:6904–6910

    Article  Google Scholar 

  20. Cabrera A, Alonzo E, Sauble E, Chu YL, Nguyen D et al (2008) Copper binding components of blood plasma and organs, and their responses to influx of large doses of 65Cu, in the mouse. Biometals 21:525–543

    Article  CAS  Google Scholar 

  21. Lopez-Avila V, Sharpe O, Robinson WH (2006) Determination of ceruloplasmin in human serum by SEC-ICPMS. Anal Bioanal Chem 386:180–187

    Article  CAS  Google Scholar 

  22. Wang M, Feng W, Lu W, Li B, Wang B et al (2007) Quantitative analysis of proteins via sulfur determination by HPLC coupled to isotope dilution ICPMS with a hexapole collision cell. Anal Chem 79:9128–9134

    Article  CAS  Google Scholar 

  23. Eaton JW, Qian M (2002) Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy. Mol Cell Biochem 234(235):135–142

    Article  Google Scholar 

  24. Khan MW, Rasheed Z, Khan WA, Ali R (2007) Biochemical, biophysical, and thermodynamic analysis of in vitro glycated human serum albumin. Biochemistry (Mosc) 72:146–152

    Article  Google Scholar 

  25. Qian Y, Zheng Y, Abraham L, Ramos KS, Tiffany-Castiglioni E (2005) Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells. Brain Res Mol Brain Res 134:323–332

    Article  CAS  Google Scholar 

  26. Thornalley PJ (2005) Dicarbonyl intermediates in the Maillard reaction. Ann N Y Acad Sci 1043:111–117

    Article  CAS  Google Scholar 

  27. Rondeau P, Bourdon E (2011) The glycation of albumin: Structural and functional impacts. Biochimie 93:645–658

    Article  CAS  Google Scholar 

  28. Polec-Pawlak K, Ruzik R, Lipiec E (2007) Investigation of Cd(II), Pb(II) and Cu(I) complexation by glutathione and its component amino acids by ESI-MS and size exclusion chromatography coupled to ICP-MS and ESI-MS. Talanta 72:1564–1572

    Article  CAS  Google Scholar 

  29. Masouka J, Hegenauer J, Van Dyke BR, Saltman P (1992) Intrinsic stoichiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin. J Biol Chem 268:21533–21537

    Google Scholar 

  30. da Silveira VC, Caramori GF, Abbott MP, Goncalves MB, Petrilli HM et al (2007) Oxindole-Schiff base copper(II) complexes interacions with human serum albumin: spectroscopic, oxidative damage, and computational studies. J Inorg Biochem 103:1331–1341

    Article  Google Scholar 

  31. Trapaidze A, Hureau C, Bal W, Winterhalter M, Faller P (2012) Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine. J Biol Inorg Chem 17:37–47

    Article  CAS  Google Scholar 

  32. (2012 ICH) ICH Harmonized Tripartite Guideline. Validation of analytical procedures: text and methodology (Q2/R1). http://www.ish.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1_Guideline.pdf

  33. Anguizola J, Matzuda R, Barnaby OS, Hoy KS, Wa C et al (2013) Review: glycation of human serum albumin. Clin Chim Acta 425:64–76

    Article  CAS  Google Scholar 

  34. Schmitt A, Gasic-Milenkovic J, Schmitt J (2005) Characterization of advanced glycation end products: mass changes in correlation to side chain modifications. Anal Biochem 346:101–106

    Article  CAS  Google Scholar 

  35. Oettl K, Stauber RE (2007) Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol 151:580–590

    Article  CAS  Google Scholar 

  36. Frolov A, Hoffmann R (2010) Identification and relative quantification of specific glycation sites in human serum albumin. Anal Bioanal Chem 379:2349–2356

    Article  Google Scholar 

  37. Barnaby OS, Cerny RL, Clarke W, Hage DS (2011) Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta 412:277–285

    Article  CAS  Google Scholar 

  38. Hureau C, Eury H, Guillot R, Bijani C, Sayen S et al (2011) X-ray and solution structures of Cu(II) GHK and Cu(II) DAHK complexes: influence on their redox properties. Chem Eur J 17:10151–10160

    Article  CAS  Google Scholar 

  39. Lapolla A, Fedele D, Reitano R, Arico NC, Seraglia R et al (2004) Enzymatic digestion and mass spectroemtry in the study of advanced glycation end products/peptides. J Am Soc Mass Spectrom 15:496–509

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from National Council of Science and Technology, Mexico (CONACYT), projects 178553,187749, 123732, is gratefully acknowledged. The authors also thank for the support from the Ministry of Public Education (PROMEP), project UGTO-PTC-327.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimierz Wrobel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.98 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrales Escobosa, A.R., Wrobel, K., Yanez Barrientos, E. et al. Effect of different glycation agents on Cu(II) binding to human serum albumin, studied by liquid chromatography, nitrogen microwave-plasma atomic-emission spectrometry, inductively-coupled-plasma mass spectrometry, and high-resolution molecular-mass spectrometry. Anal Bioanal Chem 407, 1149–1157 (2015). https://doi.org/10.1007/s00216-014-8335-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8335-1

Keywords

Navigation