Skip to main content
Log in

Aptamer-functionalized porous phospholipid nanoshells for direct measurement of Hg2+ in urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A porous phospholipid nanoshell (PPN) sensor functionalized with a specific aptamer sensor agent was prepared for rapid detection of Hg2+ in human urine with minimal sample preparation. Aptamer sensors provide an important class of optical transducers that can be readily and reproducibly synthesized. A key limitation of aptamer sensors, and many other optical sensors, is the potential of biofouling or biodegradation when used in complex biological matrices such as serum or urine, particularly when high levels of nucleases are present. We prepared Hg2+-responsive, PPN-encapsulated aptamer sensors that overcome these limitations. PPNs provide a protective barrier to encapsulate the aptamer sensor in an aqueous environment free of diffusional restrictions encountered with many polymer nanomaterials. The unique porous properties of the PPN membrane enable ready and rapid transfer of small molecular weight ions and molecules into the sensor interior while minimizing the macromolecular interactions between the transducer and degradants or interferents in the exterior milieu. Using Hg2+-responsive, PPN-encapsulated aptamer sensors, we were able to detect sub-100 ppb (chronic threshold limit from urine test) Hg2+ in human urine with no sample preparation, whereas free aptamer sensors yielded inaccurate results due to interferences from the matrix. The PPN architecture provides a new platform for construction of aptamer-functionalized sensors that target low molecular weight species in complex matrices, beyond the Hg2+ demonstrated here.

Schematic of Hg2+ sensor platform. An Hg2+-responsive aptamer was encapulated in a porous phospholipid nanoshell to minimize biofouling and improve sensor response and lifetime

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li P, Feng XB, Qiu GL (2010) Methylmercury exposure and health effects from rice and fish consumption: a review. Int J Environ Res Public Health 7:2666–2691

    Article  CAS  Google Scholar 

  2. Li P, Feng XB, Shang LH, Qiu GL, Meng B, Liang P, Zhang H (2008) Mercury pollution from artisanal mercury mining in Tongren, Guizhou, China. Appl Geochem 23:2055–2064

    Article  CAS  Google Scholar 

  3. Li P, Feng XB, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168:591–601

    Article  CAS  Google Scholar 

  4. Lee SJ, Seo YC, Jang HN, Park KS, Baek JI, An HS, Song KC (2006) Speciation and mass distribution of mercury in a bituminous coal-fired power plant. Atmos Environ 40:2215–2224

    Article  CAS  Google Scholar 

  5. Zhang L, Zhuo YQ, Chen L, Xu XC, Chen CH (2008) Mercury emissions from six coal-fired power plants in China. Fuel Process Technol 89:1033–1040

    Article  CAS  Google Scholar 

  6. Weiner JA, Nylander M (1995) An estimation of the uptake of mercury from amalgam fillings based on urinary-excretion of mercury in Swedish subjects. Sci Total Environ 168:255–265

    Article  CAS  Google Scholar 

  7. World Health Organization (2008) Guidance for identifying populations at risk from mercury exposure

  8. Liu CW, Huang CC, Chang HT (2009) Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal Chem 81:2383–2387

    Article  CAS  Google Scholar 

  9. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43:4300–4302

    Article  CAS  Google Scholar 

  10. Chan WH, Yang RH, Wang KM (2001) Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15,20-tetraphenylporphyrin. Anal Chim Acta 444:261–269

    Article  CAS  Google Scholar 

  11. Hassan SSM, Saleh MB, Gaber AAA, Mekheimer RAH, Kream NAA (2000) Novel mercury (II) ion-selective polymeric membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate. Talanta 53:285–293

    Article  CAS  Google Scholar 

  12. Kuswandi B, Narayanaswamy R (1999) Capillary optode: determination of mercury(II) in aqueous solution. Anal Lett 32:649–664

    Article  CAS  Google Scholar 

  13. Kuswandi B, Narayanaswamy R (2001) Selective pool optode for mercury ion sensing in aqueous solution. Sensors Actuators B Chem 74:131–137

    Article  CAS  Google Scholar 

  14. Maghasi AT, Conklin SD, Shtoyko T, Piruska A, Richardson JN, Seliskar CJ, Heineman WR (2004) Spectroelectrochemical sensing based on attenuated total internal reflectance stripping voltammetry. 2. Determination of mercury and lead. Anal Chem 76:1458–1465

    Article  CAS  Google Scholar 

  15. Malcik N, Oktar O, Ozser ME, Caglar P, Bushby L, Vaughan A, Kuswandi B, Narayanaswamy R (1998) Immobilised reagents for optical heavy metal ions sensing. Sensors Actuators B Chem 53:211–221

    Article  CAS  Google Scholar 

  16. Manganiello L, Rios A, Valcarcel M (2002) A method for screening total mercury in water using a flow injection system with piezoelectric detection. Anal Chem 74:921–925

    Article  CAS  Google Scholar 

  17. Murkovic I, Wolfbeis OS (1997) Fluorescence-based sensor membrane for mercury(II) detection. Sensors Actuators B-Chemical 39:246–251

    Article  CAS  Google Scholar 

  18. Palomares E, Vilar R, Durrant JR (2004) Heterogeneous colorimetric sensor for mercuric salts. Chem Commun 362–363

  19. Prestel H, Gahr A, Niessner R (2000) Detection of heavy metals in water by fluorescence spectroscopy: on the way to a suitable sensor system. Fresenius J Anal Chem 368:182–191

    Article  CAS  Google Scholar 

  20. Rogers B, Manning L, Jones M, Sulchek T, Murray K, Beneschott B, Adams JD, Hu Z, Thundat T, Cavazos H, Minne SC (2003) Mercury vapor detection with a self-sensing, resonating piezoelectric cantilever. Rev Sci Instrum 74:4899–4901

    Article  CAS  Google Scholar 

  21. Volotovskky V, Kim N (2003) Ion-sensitive field effect transistor-based multienzyme sensor for alternative detection of mercury ions, cyanide, and pesticide. J Microbiol Biotechnol 13:373–377

    CAS  Google Scholar 

  22. Xu XH, Thundat TG, Brown GM, Ji HF (2002) Detection of Hg2+ using microcantilever sensors. Anal Chem 74:3611–3615

    Article  CAS  Google Scholar 

  23. Yang RH, Wang KM, Xiao D, Luo K, Yang XH (2000) Determination of low-level mercury based on a renewable-drops sensing technique. Fresenius J Anal Chem 368:797–802

    Article  CAS  Google Scholar 

  24. Yantasee W, Lin YH, Zemanian TS, Fryxell GE (2003) Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst 128:467–472

    Article  CAS  Google Scholar 

  25. Zhang XB, Guo CC, Li ZZ, Shen GL, Yu RQ (2002) An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Anal Chem 74:821–825

    Article  CAS  Google Scholar 

  26. Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096

    Article  CAS  Google Scholar 

  27. Yu CJ, Tseng WL (2008) Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Langmuir 24:12717–12722

    Article  CAS  Google Scholar 

  28. Wei H, Wang ZD, Yang LM, Tian SL, Hou CJ, Lu Y (2010) Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 135:1406–1410

    Article  CAS  Google Scholar 

  29. Shedge HY, Creager SE (2010) Evaluation of non-specific binding suppression schemes for neutravidin and alkaline phosphatase at the surface of reticulated vitreous carbon electrodes. Anal Chim Acta 657:154–162

    Article  CAS  Google Scholar 

  30. Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836

    Article  CAS  Google Scholar 

  31. Brasuel M, Kopelman R, Miller TJ, Tjalkens R, Philbert MA (2001) Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Anal Chem 73:2221–2228

    Article  CAS  Google Scholar 

  32. Xu H, Aylott JW, Kopelman R (2002) Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging. Analyst 127:1471–1477

    Article  CAS  Google Scholar 

  33. Nielsen LJ, Olsen LF, Ozalp VC (2010) Aptamers embedded in polyacrylamide nanoparticles: a tool for in vivo metabolite sensing. ACS Nano 4:4361–4370

    Article  CAS  Google Scholar 

  34. Cheng ZL, D’Ambruoso GD, Aspinwall CA (2006) Stabilized porous phospholipid nanoshells. Langmuir 22:9507–9511

    Article  CAS  Google Scholar 

  35. O’Brien DF, Armitage BA, Benedicto A, Bennett DE, Lamparski HG, Lee YS, Srisiri W, Sisson TM (1998) Polymerization of preformed self-organized assemblies. Acc Chem Res 31:861–868

    Article  Google Scholar 

  36. Mueller A, O’Brien DF (2002) Supramolecular materials via polymerization of mesophases of hydrated amphiphiles. Chem Rev 102:727–757

    Article  CAS  Google Scholar 

  37. Lamparski H, Lee YS, Sells TD, O’Brien DF (1993) Thermotropic properties of model membranes composed of polymerizable lipids. 1. Phosphatidylcholines containing terminal acryloyl, methacryloyl, and sorbyl groups. J Am Chem Soc 115:8096–8102

    Article  CAS  Google Scholar 

  38. Muhandiramlage TP, Cheng Z, Roberts DL, Keogh JP, Hall HK Jr, Aspinwall CA (2012) Determination of pore sizes and relative porosity in porous nanoshell architectures using dextran retention with single monomer resolution and proton permeation. Anal Chem 84:9754–9761

    Article  CAS  Google Scholar 

  39. Lamparski H, Liman U, Barry JA, Frankel DA, Ramaswami V, Brown MF, Obrien DF (1992) Photoinduced destabilization of liposomes. Biochemistry 31:685–694

    Article  CAS  Google Scholar 

  40. Cheng ZL, Luisi PL (2003) Coexistence and mutual competition of vesicles with different size distributions. J Phys Chem B 107:10940–10945

    Article  CAS  Google Scholar 

  41. New RRC (1990) Liposomes: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  42. Kolchens S, Ramaswami V, Birgenheier J, Nett L, Obrien DF (1993) Quasi-elastic light-scattering determination of the size distribution of extruded vesicles. Chem Phys Lipids 65:1–10

    Article  CAS  Google Scholar 

  43. You M, Chen Y, Peng L, Han D, Yin B, Ye B, Tan W (2011) Engineering DNA aptamers for novel analytical and biomedical applications. Chem Sci 2:1003–1010

    Article  CAS  Google Scholar 

  44. Kuklenyik Z, Marzilli LG (1996) Mercury(II) site-selective binding to a DNA hairpin. Relationship of sequence-dependent intra- and interstrand cross-linking to the hairpin-duplex conformational transition. Inorg Chem 35:5654–5662

    Article  CAS  Google Scholar 

  45. Nakada S, Inoue K, Nojima S, Imura N (1978) Change in permeability of liposomes caused by methylmercury and inorganic mercury. Chem Biol Interact 22:15–23

    Article  CAS  Google Scholar 

  46. Fowler BA (1993) Mechanisms of kidney cell injury from metals. Environ Health Prospect 100:57–63

    Article  CAS  Google Scholar 

  47. Pesce AJ, Hanenson I, Sethi K (1977) beta2 microglobulinuria in a patient with nephrotoxicity secondary to mercuric chloride ingestion. Clin Toxicol 11:309–315

    Article  CAS  Google Scholar 

  48. Ferguson MA, Vaidya VS, Bonventre JV (2008) Biomarkers of nephrotoxic acute kidney injury. Toxicology 245:182–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from NIH (GM074522 and GM095763) and NSF (CHE-0548167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Aspinwall.

Additional information

Published in the topical collection celebrating ABCs 13th Anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Muhandiramlage, T.P., Keogh, J.P. et al. Aptamer-functionalized porous phospholipid nanoshells for direct measurement of Hg2+ in urine. Anal Bioanal Chem 407, 953–960 (2015). https://doi.org/10.1007/s00216-014-8246-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8246-1

Keywords

Navigation