Skip to main content
Log in

Determination of major nonmetallic impurities in magnesium by glow discharge mass spectrometry with a fast flow source using sintered and pressed powder samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fast flow glow discharge mass spectrometry with a Grimm-type ion source providing a high sputter rate was used for the determination of major nonmetallic impurities in magnesium. The analytical signal was found to be strongly influenced by the electrical discharge parameters. For calibration by standard addition, synthetic standard samples were produced in two different ways—namely, by pressing and by sintering doped metal powders. The observed sensitivity of the calibration curves was shown to depend on the particle size of the powder. For the magnesium powders, the mass fractions of oxygen, nitrogen, boron, and silicon were determined to be about 0.01 kg⋅kg-1 (relative standard deviation approximately 10–20 %), 2,700 mg⋅kg-1, 150 mg⋅kg-1, and 300 mg⋅kg-1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Urbance RJ, Roth R, Clark J (2002) Magnesium market model simulation: the impact of increased automotive interest in magnesium. JOM 8:9

    Article  Google Scholar 

  2. Haerle AG, Murray RW, Mercer WE, Mikucki BA, Miller MH (1997) The effect of non-metallic inclusions on the properties of die cast magnesium. SAE technical paper 970331. doi:10.4271/970331

  3. Cochran CN, Belitskus DL, Kinosz DL (1977) Oxidation of aluminum-magnesium melts in air, oxygen, flue gas, and carbon dioxide. Metall Trans B 8(1):323–332. doi:10.1007/BF02657663

    Article  Google Scholar 

  4. Tsuge A, Kanematsu W (2012) An analysis method for oxygen impurity in magnesium and its alloys: International standardization activity in parallel with R&D. Synthesiology 5(1):25–35

    Article  CAS  Google Scholar 

  5. Uemoto M (2011) Instrumental chemical analysis of magnesium and magnesium alloys. In: Czerwinski F (ed) Magnesium alloys - corrosion and surface treatments. InTech. doi:10.5772/13727

  6. Tsuge A, Achiwa H, Morikawa H, Uemoto M, Kanematsu W (2011) Determination of oxygen content in magnesium and its alloys by inert gas fusion-infrared absorptiometry. Anal Sci 27(7):721–721

    Article  CAS  Google Scholar 

  7. Kikuta E, Asano H, Kikuchi T (2007) Determination of oxygen in magnesium by glow discharge mass spectrometry. Tetsu To Hagane 93(2):128–131

    Article  CAS  Google Scholar 

  8. Tartaglia J, Swartz R, Bentz R Jr, Howard J (2001) Magnesium alloy ingots: chemical and metallographic analyses. JOM 53(11):16–19. doi:10.1007/s11837-001-0187-4

    Article  CAS  Google Scholar 

  9. Bakke P, Karlsen DO (1997) Inclusion assessment in magnesium and magnesium base alloys. SAE technical paper 970330. doi:10.4271/970330

  10. Nakatsugawa I, Araki K, Takayasu H, Saito K, Matsusaka K, Endou T, Shida A (2003) Surface analysis of the injection molded magnesium alloy using GD-OES. Surf Coat Technol 169:307–310

    Article  Google Scholar 

  11. Itoh S, Yamaguchi H, Hobo T, Kobayashi T (2004) Analysis of magnesium alloys by glow-discharge mass spectrometry. Bunseki Kagaku 53(6):569–574

    Article  CAS  Google Scholar 

  12. Choi BH, You BS, Park IM (2006) Characterization of protective oxide layers formed on molten AZ91 alloy containing Ca and Be. Met Mater Int 12(1):63–67

    Article  CAS  Google Scholar 

  13. Mykytiuk AP, Semeniuk P, Berman S (1990) Analysis of high-purity metals and semiconductor materials by glow discharge mass spectrometry. Spectrochim Acta Rev 13(1):1–10

    CAS  Google Scholar 

  14. Jakubowski N, Feldmann I, Stuewer D (1997) Grimm-type glow discharge ion source for operation with a high resolution inductively coupled plasma mass spectrometry instrument. J Anal Atom Spectrom 12(2):151–157. doi:10.1039/a604136a

    Article  CAS  Google Scholar 

  15. Beyer C, Feldmann I, Gilmour D, Hoffmann V, Jakubowski N (2002) Development and analytical characterization of a Grimm-type glow discharge ion source operated with high gas flow rates and coupled to a mass spectrometer with high mass resolution. Spectrochim Acta B 57(10):1521–1533. doi:10.1016/S0584-8547(02)00106-4

    Article  Google Scholar 

  16. Hoffmann V, Kasik M, Robinson P, Venzago C (2005) Glow discharge mass spectrometry. Anal Bioanal Chem 381(1):173–188. doi:10.1007/s00216-004-2933-2

    Article  CAS  Google Scholar 

  17. Bogaerts A, Okhrimovskyy A, Gijbels R (2002) Calculation of the gas flow and its effect on the plasma characteristics for a modified Grimm-type glow discharge cell. J Anal Atom Spectrom 17(9):1076–1082. doi:10.1039/B200746K

    Article  CAS  Google Scholar 

  18. ERM®-ED101 certificate of analysis (2004). BAM, Berlin

  19. ERM®-ED102 certificate of analysis (2008). BAM, Berlin

  20. Matschat R, Hinrichs J, Kipphardt H (2006) Application of glow discharge mass spectrometry to multielement ultra-trace determination in ultrahigh-purity copper and iron: a calibration approach achieving quantification and traceability. Anal Bioanal Chem 386(1):125–141. doi:10.1007/s00216-006-0645-5

    Article  CAS  Google Scholar 

  21. Hoffmann V, Jakubowski N, Stahlberg U, Stüwer D (1990) Vergleichende Untersuchungen zur Analyse kompakter und pulverförmiger Proben mittels Glimmentladungs-Massenspektrometrie (GD-MS). Analytische Glimmentladungsspektrometrie, KFA Jülich, pp 51–64

    Google Scholar 

  22. Hyk W, Stojek Z (2013) Quantifying uncertainty of determination by standard additions and serial dilutions methods taking into account standard uncertainties in both axes. Anal Chem 85(12):5933–5939. doi:10.1021/ac4007057

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the European Metrology Research Programme (EMRP) is gratefully acknowledged (EMRP SIB09, “Primary Standards for Challenging Elements”). The EMRP is jointly funded by the EMRP-participating countries within EURAMET and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Plotnikov.

Additional information

Published in the topical collection Emerging Concepts and Strategies in Analytical Glow Discharges with guest editors Rosario Pereiro and Steven Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, A., Pfeifer, J., Richter, S. et al. Determination of major nonmetallic impurities in magnesium by glow discharge mass spectrometry with a fast flow source using sintered and pressed powder samples. Anal Bioanal Chem 406, 7463–7471 (2014). https://doi.org/10.1007/s00216-014-8185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8185-x

Keywords

Navigation