Skip to main content
Log in

Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders (92Mo, 94Mo, 95Mo, 96Mo, 97Mo, 98Mo, and 100Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: 92Mo/95Mo = 0.9235(9), 94Mo/95Mo = 0.5785(8), 96Mo/95Mo = 1.0503(9), 97Mo/95Mo = 0.6033(6), 98Mo/95Mo = 1.5291(20), and 100Mo/95Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51 %), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the 95Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio measurements. However, data obtained in this study show that instrumental mass discrimination in MC-ICP-MS is consistent with mass-dependent Mo isotope fractionation. This was demonstrated by a good agreement between experimentally obtained and theoretically expected values of the exponent of isotope fractionation, β, for each triad of Mo isotopes.

Mo isotope amount ratio measurementsᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Laeter JR, Böhlke JK, De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Pure Appl Chem 75:683–800

    Article  Google Scholar 

  2. Greber ND, Hofmann BA, Voegelin AR, Villa IM, Nägler TF (2011) Geochim Cosmochim Acta 75:6600–6609

    Article  CAS  Google Scholar 

  3. Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Science 304:87–90

    Article  CAS  Google Scholar 

  4. Anbar AD, Rouxel O (2007) Ann Rev Earth Planet Sci 35:717–746

    Article  CAS  Google Scholar 

  5. Neubert N, Nägler TF, Böttcher ME (2008) Geology 36:775–778

    Article  CAS  Google Scholar 

  6. Goldberg T, Gordon G, Izon G, Archer C, Pearce C, McManus J, Anbar A, Rehkämper M (2013) J Anal Atom Spectrom 28:724–735

    Article  CAS  Google Scholar 

  7. Greber N, Siebert C, Nägler TF, Pettke T (2012) Geostand Geoanalyt Res 36:291–300

    Article  CAS  Google Scholar 

  8. Nägler TF, Anbar AD, Archer C, Goldberg T, Gordon G, Greber ND, Siebert C, Sohrin Y, Vance D (2014) Geostand Geoanalyt Res 38:149–151

    Google Scholar 

  9. Mayer A, Wieser M (2014) J Anal Atom Spectrom 29:85–94

    Article  CAS  Google Scholar 

  10. De Bièvre P, Dybkaer R, Fajgelj A, Hibbert DB (2011) Pure Appl Chem 83:1873–1935

    Article  Google Scholar 

  11. Malinovsky D, Vanhaecke F (2011) Anal Bioanal Chem 400:1619–1624

    Article  CAS  Google Scholar 

  12. Buchachenko A (2013) J Phys Chem B 117:2231–2238

    Article  CAS  Google Scholar 

  13. Moynier F, Fujii T, Brennecka GA, Nielsen SG (2013) C R Geosci 345:150–159

    Article  CAS  Google Scholar 

  14. Newman K, Freedman P, Williams J, Belshaw N, Halliday A (2009) J Anal At Spectrom 24:742–751

    Article  CAS  Google Scholar 

  15. Yang L, Mester Z, Zhou L, Gao S, Sturgeon RE, Meija J (2011) Anal Chem 83:8999–9004

    Article  CAS  Google Scholar 

  16. Burkhardt C, Kleine T, Oberli F, Pack A, Bourdon B, Wieler R (2011) Earth Planet Sci Lett 312:390–400

    Article  CAS  Google Scholar 

  17. Fujii T, Moynier F, Telouk P, Albarède F (2006) Astrophys J 647:1506–1516

    Article  CAS  Google Scholar 

  18. Fujii T, Moynier F, Albarède F (2009) Chem Geol 267:139–156

    Article  CAS  Google Scholar 

  19. Meija J (2012) Anal Bioanal Chem 403:2071–2076

    Article  CAS  Google Scholar 

  20. Malinovsky D, Rodushkin I, Baxter DC, Ingri J, Öhlander B (2005) Int J Mass Spectrom 245:94–107

    Article  CAS  Google Scholar 

  21. Baxter DC, Rodushkin I, Engström E, Malinovsky D (2006) J Anal At Spectrom 21:427–430

    Article  CAS  Google Scholar 

  22. International Organisation for Standardization (2008) Guide to the expression of uncertainty in measurements (GUM:1995). International Organisation for Standardization, Geneva

    Google Scholar 

  23. Kragten J (1994) Analyst 119:2161–2165

    Article  CAS  Google Scholar 

  24. Vanhaecke F, Balcaen L, Malinovsky D (2009) J Anal At Spectrom 24:863–886

    Article  CAS  Google Scholar 

  25. Meija J, Mester Z (2008) Metrologia 45:53–62

    Article  CAS  Google Scholar 

  26. Sebenik RF et al (2005) Ullmann’s encyclopedia of chemical technology, 29th edn. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  27. Jha MC (2001) In: Mishra B (ed.) Review of extraction processing, properties & applications of reactive metals. The Minerals, Metals & Materials Society, Warrendale. pp. 73–82

  28. Walczyk T (2004) Anal Bioanal Chem 378:229–231

    Article  CAS  Google Scholar 

  29. Young ED, Galy A, Nagahara H (2002) Geochim Cosmochim Acta 66:1095–1104

    Article  CAS  Google Scholar 

  30. Malinovsky D, Vanhaecke F (2014) J Anal At Spectrom 29:1090–1097

    Article  CAS  Google Scholar 

  31. Malinovsky D, Hammarlund D, Ilyashuk B, Martinsson O, Gelting J (2007) Chem Geol 236:181–198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by funding from the UK National Measurement Office and EURAMET within the project SIB09 Elements. The authors are grateful to Mike Sargent for encouragement and useful discussions in the project. Jennifer O’Reilly is acknowledged for careful internal review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitry Malinovsky or Heidi Goenaga-Infante.

Additional information

Published in the topical collection celebrating ABCs 13th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinovsky, D., Dunn, P.J.H., Petrov, P. et al. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures. Anal Bioanal Chem 407, 869–882 (2015). https://doi.org/10.1007/s00216-014-8112-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8112-1

Keywords

Navigation