Skip to main content
Log in

Stereoselective separation and pharmacokinetic dissipation of the chiral neonicotinoid sulfoxaflor in soil by ultraperformance convergence chromatography/tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ultraperformance convergence chromatography/tandem triple quadrupole mass spectrometry (UPC2-MS/MS) is a novel tool in separation science that combines the advantages of supercritical fluid chromatography with ultraperformance liquid chromatography/MS/MS technology. The use of nontoxic CO2 fluid and a postcolumn additive to complement MS/MS allows better control of analyte retention for chiral separation and high-sensitivity determination with different chiral stationary phases. This paper reports the stereoselective separation and determination of the chiral neonicotinoid sulfoxaflor in vegetables and soil by UPC2-MS/MS. Baseline resolution (Rs ≥ 1.56) of and high selectivity (LOQ ≤ 1.83 μg/kg) for the four stereoisomers were achieved by postcolumn addition of 1 % formic acid–methanol to a Chiralpak IA-3 using CO2/isopropanol/acetonitrile as the mobile phase at 40 °C, 2,500 psi, and for 6.5 min in electrospray ionization positive mode. Rearranged Van’t Hoff equations afforded the thermodynamic parameters ΔH ο and ΔS ο, which were analyzed to promote understanding of the enthalpy-driven separation of sulfoxaflor stereoisomers. The interday mean recovery, intraday repeatability, and interday reproducibility varied from 72.9 to 103.7 %, from 1.8 to 9.2 %, and from 3.1 to 9.4 %, respectively. The proposed method was used to study the pharmacokinetic dissipation of sulfoxaflor stereoisomers in soil under greenhouse conditions. The estimated half-life ranged from 5.59 to 6.03 d, and statistically nonsignificant enantioselective degradation was observed. This study not only demonstrates that the UPC2-MS/MS system is an efficient and sensitive method for sulfoxaflor stereoseparation, but also provides the first experimental evidence of the pharmacokinetic dissipation of sulfoxaflor stereoisomers in the environment.

Chemical structure and UPC2-MS/MS separation chromatogram of sulfoxaflor. (* stereogenic center)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABPR:

Pressure of automated backpressure regulator

CSP:

Chiral stationary phase

CS-SA:

Selector–selectand

dSPE:

Dispersive solid-phase extraction

EF:

Enantiomer fraction

ESI:

Electrospray ionization

MRL:

Maximum residue limit

MRM:

Multiple reaction monitoring

MWCNTs:

Multi-walled carbon nanotubes

nAChR:

Nicotinic acetylcholine receptor

Rs:

Resolution

RSD:

Relative standard deviation

SSE:

Signal suppression and enhancement

References

  1. Zhu Y, Loso MR, Watson GB, Sparks TC, Rogers RB, Huang JX, Gerwick BC, Babcock JM, Kelley D, Hegde VB, Nugent BM, Renga JM, Denholm I, Gorman K, DeBoer GJ, Hasler J, Meade T, Thomas JD (2011) Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J Agric Food Chem 59(7):2950–2957

    Article  CAS  Google Scholar 

  2. Sparks TC, Watson GB, Loso MR, Geng CX, Babcock JM, Thomas JD (2013) Sulfoxaflor and the sulfoximine insecticides: chemistry, mode of action and basis for efficacy on resistant insects. Pestic Biochem Physiol 107(1):1–7

    Article  CAS  Google Scholar 

  3. Longhurst C, Babcock JM, Denholm I, Gorman K, Thomas JD, Sparks TC (2013) Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum. Pest Manag Sci 69(7):809–813

  4. Cutler P, Slater R, Edmunds AJ, Maienfisch P, Hall RG, Earley FG, Pitterna T, Pal S, Paul VL, Goodchild J, Blacker M, Hagmann L, Crossthwaite AJ (2013) Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Manag Sci 69(5):607–619

    Article  CAS  Google Scholar 

  5. Garrison AW (2006) Probing the enantioselectivity of chiral pesticides. Environ Sci Technol 40(1):16–23

    Article  Google Scholar 

  6. Zhang H, Wang X, Zhuang S, Qian M, Jiang K, Wang X, Xu H, Qi P, Wang Q (2012) Enantioselective separation and simultaneous determination of fenarimol and nuarimol in fruits, vegetables, and soil by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 404(6–7):1983–1991

    Article  CAS  Google Scholar 

  7. Tonon MA, Jabor VA, Bonato PS (2013) Enantioselective analysis of zopiclone in rat brain by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 405(1):267–273

    Article  CAS  Google Scholar 

  8. Babcock JM, Gerwick CB, Huang JX, Loso MR, Nakamura G, Nolting SP, Rogers RB, Sparks TC, Thomas J, Watson GB, Zhu Y (2011) Biological characterization of sulfoxaflor, a novel insecticide. Pest Manag Sci 67(3):328–334

    Article  CAS  Google Scholar 

  9. Lysandrou M, Ahmad M, Longhurst C (2010) Comparative efficacy of sulfoxaflor against cotton leafhopper, Amrasca devastans (Distant)(Cicadellidae: Homoptera) under field conditions of punjab and sindh. J Agric Res 48(4):517–524

  10. Siebert M, Thomas J, Nolting S, Leonard B, Gore J, Catchot A, Lorenz G, Stewart S, Cook D, Walton L (2012) Field evaluations of sulfoxaflor, a novel insecticide, against tarnished plant bug (Hemiptera: Miridae) in cotton. J Cotton Sci 16:129–143

    CAS  Google Scholar 

  11. Watson GB, Loso MR, Babcock JM, Hasler JM, Letherer TJ, Young CD, Zhu Y, Casida JE, Sparks TC (2011) Novel nicotinic action of the sulfoximine insecticide sulfoxaflor. Insect Biochem Mol Biol 41(7):432–439

    Article  CAS  Google Scholar 

  12. Sparks TC, DeBoer GJ, Wang NX, Hasler JM, Loso MR, Watson GB (2012) Differential metabolism of sulfoximine and neonicotinoid insecticides by Drosophila melanogaster monooxygenase CYP6G1. Pestic Biochem Physiol 103(3):159–165

  13. Zhou Q, Gao B, Zhang X, Xu Y, Shi H, Yu LL (2014) Chemical profiling of triacylglycerols and diacylglycerols in cow milk fat by ultra-performance convergence chromatography combined with a quadrupole time-of-flight mass spectrometry. Food Chem 143:199–204

    Article  CAS  Google Scholar 

  14. Ministry of Agriculture (2004) NY/T788: Guidelines for pesticide residue field trials. Ministry of Agriculture, People's Republic of China, Beijing

  15. Péter A, Vékes E, Armstrong DW (2002) Effects of temperature on retention of chiral compounds on a ristocetin A chiral stationary phase. J Chromatogr A 958(1):89–107

    Article  Google Scholar 

  16. O’Brien T, Crocker L, Thompson R, Thompson K, Toma P, Conlon D, Feibush B, Moeder C, Bicker G, Grinberg N (1997) Mechanistic aspects of chiral discrimination on modified cellulose. Anal Chem 69(11):1999–2007

    Article  Google Scholar 

  17. Diao J, Xu P, Wang P, Lu Y, Lu D, Zhou Z (2010) Environmental behavior of the chiral aryloxyphenoxypropionate herbicide diclofop-methyl and diclofop: enantiomerization and enantioselective degradation in soil. Environ Sci Technol 44(6):2042–2047

    Article  CAS  Google Scholar 

  18. Li Z, Zhang Y, Li Q, Wang W, Li J (2011) Enantioselective degradation, abiotic racemization, and chiral transformation of triadimefon in soils. Environ Sci Technol 45(7):2797–2803

    Article  CAS  Google Scholar 

  19. Kažoka H, Koliškina O, Veinberg G, Vorona M (2013) Separation of piracetam derivatives on polysaccharide-based chiral stationary phases. J Chromatogr A 1281:160–165

    Article  Google Scholar 

  20. Khan M, Viswanathan B, Rao DS, Reddy R (2007) Chiral separation of Frovatriptan isomers by HPLC using amylose based chiral stationary phase. J Chromatogr B 846(1):119–123

    Article  CAS  Google Scholar 

  21. Ward TJ, Ward KD (2011) Chiral separations: a review of current topics and trends. Anal Chem 84(2):626–635

    Article  Google Scholar 

  22. Zhang T, Nguyen D, Franco P (2008) Enantiomer resolution screening strategy using multiple immobilised polysaccharide-based chiral stationary phases. J Chromatogr A 1191(1):214–222

    Article  CAS  Google Scholar 

  23. Ali I, Naim L, Ghanem A, Aboul-Enein HY (2006) Chiral separations of piperidine-2,6-dione analogues on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta 69(4):1013–1017

  24. Qiu J, Dai S, Zheng C, Yang S, Chai T, Bie M (2011) Enantiomeric separation of triazole fungicides with 3-μm and 5-μml particle chiral columns by reverse-phase high-performance liquid chromatography. Chirality 23(6):479–486

    Article  CAS  Google Scholar 

  25. Li J, Dong F, Cheng Y, Liu X, Xu J, Li Y, Chen X, Kong Z, Zheng Y (2012) Simultaneous enantioselective determination of triazole fungicide difenoconazole and its main chiral metabolite in vegetables and soil by normal-phase high-performance liquid chromatography. Anal Bioanal Chem 404(6–7):2017–2031

    Article  CAS  Google Scholar 

  26. Sardella R, Ianni F, Lisanti A, Marinozzi M, Scorzoni S, Natalini B (2014) The effect of mobile phase composition in the enantioseparation of pharmaceutically relevant compounds with polysaccharide-based stationary phases. Biomed Chromatogr 28(1):159–167

    Article  CAS  Google Scholar 

  27. West C, Bouet A, Routier S, Lesellier E (2012) Effects of mobile phase composition and temperature on the supercritical fluid chromatography enantioseparation of chiral fluoro-oxoindole-type compounds with chlorinated polysaccharide stationary phases. J Chromatogr A 1269:325–335

    Article  CAS  Google Scholar 

  28. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78(7):2093–2099

    Article  Google Scholar 

  29. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217(6):814–856

    Article  Google Scholar 

  30. Wang C, Zhang Y (2013) Effects of column back pressure on supercritical fluid chromatography separations of enantiomers using binary mobile phases on 10 chiral stationary phases. J Chromatogr A 1281:127–134

    Article  CAS  Google Scholar 

  31. Abrahamsson V, Rodriguez-Meizoso I, Turner C (2012) Determination of carotenoids in microalgae using supercritical fluid extraction and chromatography. J Chromatogr A 1250:63–68

    Article  CAS  Google Scholar 

  32. Wang F, O’Brien T, Dowling T, Bicker G, Wyvratt J (2002) Unusual effect of column temperature on chromatographic enantioseparation of dihydropyrimidinone acid and methyl ester on amylose chiral stationary phase. J Chromatogr A 958(1):69–77

    Article  CAS  Google Scholar 

  33. Liu H, Berger SJ, Chakraborty AB, Plumb RS, Cohen SA (2002) Multidimensional chromatography coupled to electrospray ionization time-of-flight mass spectrometry as an alternative to two-dimensional gels for the identification and analysis of complex mixtures of intact proteins. J Chromatogr B 782(1):267–289

    Article  CAS  Google Scholar 

  34. Marwah A, Marwah P, Lardy H (2002) Analysis of ergosteroids. VIII: Enhancement of signal response of neutral steroidal compounds in liquid chromatographic–electrospray ionization mass spectrometric analysis by mobile phase additives. J Chromatogr A 964(1–2):137–151

  35. Garcia M (2005) The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography–electrospray mass spectrometry. J Chromatogr B 825(2):111–123

    Article  CAS  Google Scholar 

  36. Corradini D, Huber CG, Timperio AM, Zolla L (2000) Resolution and identification of the protein components of the photosystem II antenna system of higher plants by reversed-phase liquid chromatography with electrospray–mass spectrometric detection. J Chromatogr A 886(1):111–121

    Article  CAS  Google Scholar 

  37. Chen Z, Dong F, Xu J, Liu X, Chen Y, Liu N, Tao Y, Zheng Y (2014) Stereoselective determination of a novel chiral insecticide, sulfoxaflor, in brown rice, cucumber and apple by normal-phase high-performance liquid chromatography. Chirality 26(2):114–120

    Article  CAS  Google Scholar 

  38. Wang T, Wenslow RM Jr (2003) Effects of alcohol mobile-phase modifiers on the structure and chiral selectivity of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. J Chromatogr A 1015(1):99–110

  39. El-Sheikh AH, Sweileh JA, Al-Degs YS, Insisi AA, Al-Rabady N (2008) Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters. Talanta 74(5):1675–1680

    Article  CAS  Google Scholar 

  40. Zhao P, Wang L, Zhou L, Zhang F, Kang S, Pan C (2012) Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J Chromatogr A 1225:17–25

    Article  CAS  Google Scholar 

  41. Dong F, Li J, Chankvetadze B, Cheng Y, Xu J, Liu X, Li Y, Chen X, Bertucci C, Tedesco D (2013) The chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity and environmental behavior in vegetables and soil. Environ Sci Technol 47(7):3386–3394

    CAS  Google Scholar 

  42. Zhang H, Wang X, Qian M, Wang X, Xu H, Xu M, Wang Q (2011) Residue analysis and degradation studies of fenbuconazole and myclobutanil in strawberry by chiral high-performance liquid chromatography–tandem mass spectrometry. J Agric Food Chem 59(22):12012–12017

    Article  CAS  Google Scholar 

  43. Xu J, Dong F, Liu X, Li J, Li Y, Shan W, Zheng Y (2012) Determination of sulfoxaflor residues in vegetables, fruits and soil using ultra-performance liquid chromatography/tandem mass spectrometry. Anal Methods 4(12):4019

    Article  CAS  Google Scholar 

  44. Dong F, Cheng L, Liu X, Xu J, Li J, Li Y, Kong Z, Jian Q, Zheng Y (2012) Enantioselective analysis of triazole fungicide myclobutanil in cucumber and soil under different application modes by chiral liquid chromatography/tandem mass spectrometry. J Agric Food Chem 60(8):1929–1936

    Article  CAS  Google Scholar 

  45. Wong CS (2006) Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Anal Bioanal Chem 386(3):544–558

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC, 31272071 and 31171879).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengshou Dong or Yongquan Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Dong, F., Xu, J. et al. Stereoselective separation and pharmacokinetic dissipation of the chiral neonicotinoid sulfoxaflor in soil by ultraperformance convergence chromatography/tandem mass spectrometry. Anal Bioanal Chem 406, 6677–6690 (2014). https://doi.org/10.1007/s00216-014-8089-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8089-9

Keywords

Navigation