Skip to main content
Log in

NMR-based metabolomics study of the biochemical relationship between sugarcane callus tissues and their respective nutrient culture media

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The culture of sugarcane leaf explant onto culture induction medium triggers the stimulation of cell metabolism into both embryogenic and non-embryogenic callus tissues. Previous analyses demonstrated that embryogenic and non-embryogenic callus tissues have distinct metabolic profiles. This study is the follow-up to understand the biochemical relationship between the nutrient media and callus tissues using one-dimensional (1D 1H) and two-dimensional (2D 1H–13C) NMR spectroscopy followed by principal component analysis (PCA). 1D 1H spectral comparisons of fresh unspent media (FM), embryogenic callus media (ECM), non-embryogenic callus media (NECM), embryogenic callus (EC), and non-embryogenic callus (NEC), showed different metabolic relationships between callus tissues and media. Based on metabolite fold change analysis, significantly changing sugar compounds such as glucose, fructose, sucrose, and maltose were maintained in large quantities by EC only. Significantly different amino acid compounds such as valine, leucine, alanine, threonine, asparagine, and glutamine and different organic acid derivatives such as lactate, 2-hydroxyisobutyrate, 4-aminobutyrate, malonate, and choline were present in EC, NEC, and NECM, which indicates that EC maintained these nutrients, while NEC either maintained or secreted the metabolites. These media and callus-specific results suggest that EC and NEC utilize and/or secrete media nutrients differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guiderdoni E, Merot B, Klsomtramage PF, Feldman P, Glaszman JC (1995) Somatic embryogenesis in sugarcane. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 92–113

    Google Scholar 

  2. Pareek LK (2005) Trends in plant tissue culture and biotechnology. Agrobios 11:334

    Google Scholar 

  3. Nielsen K, Hansen IB (1992) Appearance of extracellular proteins associated with somatic embryogenesis in suspension cultures of barley (Hordeum vulgare L.). J Plant Physiol 139:489–497

    Article  CAS  Google Scholar 

  4. Hendriks T, De Vries SC (1995) The role of secreted proteins in carrot somatic embryogenesis. In: Terzi MCR, Faleovigna A (eds) Current issues in plant molecular and cellular biology. Kluwer, Dordrecht, pp 71–105

    Google Scholar 

  5. Poulsen GB, Frugis G, Albrechtsen M, Mariottti D (1996) Synthesis of extracellular proteins in embryogenic and non-embryogenic cell cultures of alfalfa. Plant Cell Tissue Organ Cult 44:257–260

    Article  CAS  Google Scholar 

  6. Tsukahara M, Komamine A (1997) Separation and analysis of cell types involved in early stages of carrot somatic embryogenesis. Plant Cell Tissue Organ Cult 47:145–151

    Article  Google Scholar 

  7. Dussert S, Verdeil J, Buffard-Morel J (1995) Specific nutrient uptake during initiation of somatic embryogenesis in coconut calluses. Plant Sci 111:229–236

    Article  CAS  Google Scholar 

  8. Jeyaseelan M, Rao MV (2005) Biochemical studies of embryogenic and non-embryogenic callus of Cardiospermum halicacabum L. Indian J Exp Biol 43:555–560

    CAS  Google Scholar 

  9. Pescador R, Kerbauy GB, Kraus JE, Ferreira WM, Guerra MP, Figueiredo-Ribeiro RCL (2008) Changes in soluble carbohydrates and starch amounts during somatic and zygotic embryogenesis of Accasellowiana (Myrtaceae). In Vitro Cell Dev Biol Plant 44:289–299

    Article  CAS  Google Scholar 

  10. Konradova H, Lipavska H, Albrechtova J, Vreugdenhil D (2002) Sucrose metabolism during somatic and zygotic embryogeneses in Norway spruce: content of soluble saccharides and localisation of key enzyme activities. J Plant Physiol 159:387–396

    Article  CAS  Google Scholar 

  11. Loiseau J, Marche C, Deunff YL (1995) Effects of auxins, cytokinins, carbohydrates and amino acids on somatic embryogenesis induction from shoot apices of pea. Plant Cell Tissue Organ Cult 41(3):267–275

    Article  CAS  Google Scholar 

  12. Blanc G, Michaux-Ferriere N, Teisson E, Lardet L, Carron MP (1999) Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell Tissue Organ Cult 59:103–112

    Article  CAS  Google Scholar 

  13. Blanc G, Lardet L, Martin A, Jacob JL, Carron MP (2002) Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). J Exp Bot 53(373):1453–1462

    Article  CAS  Google Scholar 

  14. Nieves N, Segura-nieto M, Banco MA, Sanchez M, Gonzalez A, Gonzalez JL, Castillo R (2003) Biochemical characterization of embryogenic and non-embryogenic calluses of sugarcane. In Vitro Cell Dev Biol Plant 39:343–345

    Article  CAS  Google Scholar 

  15. Oropeza M, Marcano AK, Garciaa ED (2001) Proteins related with embryogenic potential in callus and cell suspensions of sugarcane (Saccharum sp). In Vitro Cell Dev Biol Plant 37:211–216

    Article  CAS  Google Scholar 

  16. Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Soulange JG, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82

    Article  Google Scholar 

  17. Oropeza M, GarcõÂa E (1996) Somaclonal variants resistant to sugarcane mosaic virus and their agronomic characterization. In Vitro Cell Dev Biol Plant 32:26–30

    Article  Google Scholar 

  18. Summer LW, Mendes P (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  Google Scholar 

  19. Viant MR, Rosenblum ES, Tieerdema RS (2003) NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol 37:4982–4989

    Article  CAS  Google Scholar 

  20. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  CAS  Google Scholar 

  21. Kim SW, Ban SH, Jeong SC (2007) Genetic discrimination between Catharanthus roseus cultivars by metabolic fingerprinting using 1H NMR spectra of aromatic compounds. Biotechnol Bioprocess Eng 12:646–652

    Article  CAS  Google Scholar 

  22. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549. doi:10.1038/nprot.2009.237

    Article  CAS  Google Scholar 

  23. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(911–7)

  24. Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372:204–212. doi:10.1016/j.ab.2007.10.002

    Article  CAS  Google Scholar 

  25. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133. doi:10.1093/nar/gks374

    Article  CAS  Google Scholar 

  26. Goodpaster AM, Kennedy MA (2011) Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies. Chemom Intell Lab Syst 109:162–170

    Article  CAS  Google Scholar 

  27. Goodpaster AM, Romick-Rosendale LE, Kennedy MA (2010) Statistical significance analysis of nuclear magnetic resonance-based metabonomics data. Anal Biochem 401:134–143

    Article  CAS  Google Scholar 

  28. Yang SO, Kim SH, Kim Y, Kim HS, Chun YJ, Choi HK (2009) Metabolic discrimination of Catharanthus roseus calli according to their relative locations using 1H NMR and principal component analysis. Biosci Biotechnol Biochem 73(9):2032–2036

    Article  CAS  Google Scholar 

  29. Choi YH, Tapias EC, Kim HK, Lefeber AWM, Erkelens C, Verhoeven JTJ, Brzin J, Zel J, Verpoorte R (2004) Metabolic discrimination of catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410

    Article  CAS  Google Scholar 

  30. Lima MRM, Felgueiras ML, Gracxa G (2010) NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. J Exp Bot 61(14):4033–4042

    Article  CAS  Google Scholar 

  31. Chanprame S, Kuo TM, Widholm JM (1998) Soluble carbohydrate of soybean [Glycine max (L.) Merr.] somatic and zygotic embryos during development. In Vitro Cell Dev Biol Plant 34:64

    Article  CAS  Google Scholar 

  32. Dave A, Batra A (1995) Role of protein metabolism constituents in somatic embryo formation in cumin. Indian J Plant Physiol 38:25

    CAS  Google Scholar 

  33. Sarker KK, Kabir AH, Sarmin AH, Nasrin Z, Alam MF (2007) Improved somatic embryogenesis using L-Asparagine in wheat (Triticum aestivum L.). Sjemenarstvo 24:3–4

    Google Scholar 

  34. Akemine T, Kikuta Y, Tagawa T (1970) Respiratory changes during callus formation in potato tuber tissue cultured in vitro. J Fac Agric Hokkaido Univ Sapporo 56:3

    Google Scholar 

  35. Malabadi RB, Staden JV (2011) Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cell Dev Biol Plant 41:181–186

    Article  Google Scholar 

  36. Tasseva G, Richard L, Zachowski A (2004) Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Lett 566:115–120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jack C. Comstock of USDA-ARS Sugarcane Field Station Canal Point, Florida for supplying sugarcane materials used for initiating callus cultures. AB is supported by SC-INBRE (2 P20 GM103499), MT is supported by BlueCross BlueShield of South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, I., Thapaliya, M., Boroujerdi, A. et al. NMR-based metabolomics study of the biochemical relationship between sugarcane callus tissues and their respective nutrient culture media. Anal Bioanal Chem 406, 5997–6005 (2014). https://doi.org/10.1007/s00216-014-8002-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8002-6

Keywords

Navigation