Skip to main content
Log in

Automated quantitative analysis of lipid accumulation and hydrolysis in living macrophages with label-free imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The accumulation of lipids in macrophages is a key factor that promotes the formation of atherosclerotic lesions. Several methods such as biochemical assays and neutral lipid staining have been used for the detection of lipids in cells. However, a method for real-time quantitative assessment of the lipid content in living macrophages has yet to be shown, particularly for its kinetic process with drugs, due to the lack of suitable tools for non-invasive chemical detection. Here we demonstrate label-free real-time monitoring of lipid droplets (LDs) in living macrophages by using coherent anti-Stokes Raman scattering (CARS) microscopy. In addition, we have established an automated image analysis method based on maximum entropy thresholding (MET) to quantify the cellular lipid content. The result of CARS image analysis shows a good correlation (R 2 > 0.9) with the measurement of biochemical assay. Using this method, we monitored the processes of lipid accumulation and hydrolysis in macrophages. We further characterized the effect of a lipid hydrolysis inhibitor (diethylumbelliferyl phosphate, DEUP) and determined the kinetic parameters such as the inhibition constant, K i. Our work demonstrates that the automated quantitative analysis method is useful for the studies of cellular lipid metabolism and has potential for preclinical high-throughput screening of therapeutic agents related to atherosclerosis and lipid-associated disorders.

Automated quantitative analysis for the label-free detection of lipid content in living cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7(2):77–86

    Article  Google Scholar 

  2. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104(4):503–516

    Article  CAS  Google Scholar 

  3. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438(7068):612–621

    Article  CAS  Google Scholar 

  4. Ouimet M, Marcel YL (2012) Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol 32(3):575–581

    Article  CAS  Google Scholar 

  5. Cuchel M, Rader DJ (2006) Macrophage reverse cholesterol transport—key to the regression of atherosclerosis? Circulation 113(21):2548–2555

    Article  Google Scholar 

  6. Zhao B, Fisher BJ, St Clair RW, Rudel LL, Ghosh S (2005) Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J Lipid Res 46(10):2114–2121

    Article  CAS  Google Scholar 

  7. Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S, Takanashi M, Ohta K, Tamura Y, Okazaki S, Yahagi N, Ohashi K, Amemiya-Kudo M, Nakagawa Y, Nagai R, Kadowaki T, Osuga J, Ishibashi S (2008) Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. J Biol Chem 283(48):33357–33364

    Article  CAS  Google Scholar 

  8. Sekiya M, Osuga J, Nagashima S, Ohshiro T, Igarashi M, Okazaki H, Takahashi M, Tazoe F, Wada T, Ohta K, Takanashi M, Kumagai M, Nishi M, Takase S, Yahagi N, Yagyu H, Ohashi K, Nagai R, Kadowaki T, Furukawa Y, Ishibashi S (2009) Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metab 10(3):219–228

    Article  CAS  Google Scholar 

  9. Ghosh S, Zhao B, Bie JH, Song JM (2010) Macrophage cholesteryl ester mobilization and atherosclerosis. Vasc Pharmacol 52(1–2):1–10

    Article  CAS  Google Scholar 

  10. Ishikawa TT, Macgee J, Morrison JA, Glueck CJ (1974) Quantitative-analysis of cholesterol in 5 to 20 Mu1 of plasma. J Lipid Res 15(3):286–291

    CAS  Google Scholar 

  11. Stclair RW, Smith BP, Wood LL (1977) Stimulation of cholesterol esterification in rhesus-monkey arterial smooth-muscle cells. Circ Res 40(2):166–173

    Article  CAS  Google Scholar 

  12. Matthaus C, Krafft C, Dietzek B, Brehm BR, Lorkowski S, Popp J (2012) Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling. Anal Chem 84(20):8549–8556

    Article  Google Scholar 

  13. Lu KY, Ching LC, Su KH, Yu YB, Kou YR, Hsiao SH, Huang YC, Chen CY, Cheng LC, Pan CC, Lee TS (2010) Erythropoietin suppresses the formation of macrophage foam cells role of liver X receptor alpha. Circulation 121(16):1828–1837

    Article  CAS  Google Scholar 

  14. Koren E, Franzen J, Fugate RD, Alaupovic P (1990) Analysis of cholesterol ester accumulation in macrophages by the use of digital imaging fluorescence microscopy. Atherosclerosis 85(2–3):175–184

    Article  CAS  Google Scholar 

  15. Etzion Y, Hackett A, Proctor BM, Ren J, Nolan B, Ellenberger T, Muslin AJ (2009) An unbiased chemical biology screen identifies agents that modulate uptake of oxidized LDL by macrophages. Circ Res 105(2):148–157

    Article  CAS  Google Scholar 

  16. van de Poll SWE, Bakker Schut TC, van der Laarse A, Puppels GJ (2002) In situ investigation of the chemical composition of ceroid in human atherosclerosis by Raman spectroscopy. J Raman Spectrosc 33(7):544–551

    Article  Google Scholar 

  17. Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett 82(20):4142–4145

    Article  CAS  Google Scholar 

  18. Duncan MD, Reintjes J, Manuccia TJ (1982) Scanning coherent anti-Stokes Raman microscope. Opt Lett 7(8):350–352

    Article  CAS  Google Scholar 

  19. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He CW, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909):1857–1861

    Article  CAS  Google Scholar 

  20. Nan XL, Cheng JX, Xie XS (2003) Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 44(11):2202–2208

    Article  CAS  Google Scholar 

  21. Konorov SO, Glover CH, Piret JM, Bryan J, Schulze HG, Blades MW, Turner RFB (2007) In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy. Anal Chem 79(18):7221–7225

    Article  CAS  Google Scholar 

  22. Paar M, Jungst C, Steiner NA, Magnes C, Sinner F, Kolb D, Lass A, Zimmermann R, Zumbusch A, Kohlwein SD, Wolinski H (2012) Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 287(14):11164–11173

    Article  CAS  Google Scholar 

  23. Kong LJ, Ji MB, Holtom GR, Fu D, Freudiger CW, Xie XS (2013) Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator. Opt Lett 38(2):145–147

    Article  Google Scholar 

  24. Henry FP, Cote D, Randolph MA, Rust EAZ, Redmond RW, Kochevar IE, Lin CP, Winograd JM (2009) Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy. Plast Reconstr Surg 123(2):123s–130s

    CAS  Google Scholar 

  25. Yen K, Le TT, Bansal A, Narasimhan D, Cheng JX, Tissenbaum HA (2010) A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS One 5(9):e12810

    Article  Google Scholar 

  26. Chien CH, Chen WW, Wu JT, Chang TC (2011) Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy. J Biomed Opt 16(1):016012

    Article  Google Scholar 

  27. Urasaki Y, Johlfs MG, Fiscus RR, Le TT (2012) Imaging immune and metabolic cells of visceral adipose tissues with multimodal nonlinear optical microscopy. PLoS One 7(6):e38418

    Article  CAS  Google Scholar 

  28. Hellerer T, Axang C, Brackmann C, Hillertz P, Pilon M, Enejder A (2007) Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. P Natl Acad Sci USA 104(37):14658–14663

    Article  CAS  Google Scholar 

  29. Suhalim JL, Chung CY, Lilledahl MB, Lim RS, Levi M, Tromberg BJ, Potma EO (2012) Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy. Biophys J 102(8):1988–1995

    Article  CAS  Google Scholar 

  30. Freudiger CW, Min W, Holtom GR, Xu BW, Dantus M, Xie XS (2011) Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy. Nat Photonics 5(2):103–109

    Article  CAS  Google Scholar 

  31. Klapper M, Ehmke M, Palgunow D, Bohme M, Matthaus C, Bergner G, Dietzek B, Popp J, Doring F (2011) Fluorescence-based fixative and vital staining of lipid droplets in Caenorhabditis elegans reveal fat stores using microscopy and flow cytometry approaches. J Lipid Res 52(6):1281–1293

    Article  CAS  Google Scholar 

  32. Burkacky O, Zumbusch A, Brackmann C, Enejder A (2006) Dual-pump coherent anti-Stokes-Raman scattering microscopy. Opt Lett 31(24):3656–3658

    Article  CAS  Google Scholar 

  33. Le TT, Langohr IM, Locker MJ, Sturek M, Cheng JX (2007) Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12(5):054007

    Article  Google Scholar 

  34. Kim SH, Lee ES, Lee JY, Lee BS, Park JE, Moon DW (2010) Multiplex coherent anti-Stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids. Circ Res 106(8):1332–1341

    Article  CAS  Google Scholar 

  35. Chen S, Zhao M, Wu G, Yao C, Zhang J (2012) Recent advances in morphological cell image analysis. Comput Math Methods Med 2012:101536

    Google Scholar 

  36. Hagmar J, Brackmann C, Gustavsson T, Enejder A (2008) Image analysis in nonlinear microscopy. J Opt Soc Am A 25(9):2195–2206

    Article  Google Scholar 

  37. Vogler N, Bocklitz T, Mariani M, Deckert V, Markova A, Schelkens P, Rosch P, Akimov D, Dietzek B, Popp J (2010) Separation of CARS image contributions with a Gaussian mixture model. J Opt Soc Am A 27(6):1361–1371

    Article  Google Scholar 

  38. Gao L, Zhou HJ, Thrall MJ, Li F, Yang YL, Wang ZY, Luo PF, Wong KK, Palapattu GS, Wong STC (2011) Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy. Biomed Opt Express 2(4):915–926

    Article  Google Scholar 

  39. Medyukhina A, Meyer T, Schmitt M, Romeike BFM, Dietzek B, Popp J (2012) Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy. J Biophotonics 5(11–12):878–888

    Article  Google Scholar 

  40. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168

    Article  Google Scholar 

  41. Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  42. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph 29(3):273–285

    Article  Google Scholar 

  43. Schulze K, Lopez DA, Tillich UM, Frohme M (2011) A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and image. J BMC Biotechnol 11:118

    Article  CAS  Google Scholar 

  44. Harrison EH, Bernard DW, Scholm P, Quinn DM, Rothblat GH, Glick JM (1990) Inhibitors of neutral cholesteryl ester hydrolase. J Lipid Res 31(12):2187–2193

    CAS  Google Scholar 

  45. Chien CH, Chen WW, Wu JT, Chang TC (2012) Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy. J Biomed Opt 17(12):126001

    Article  Google Scholar 

  46. Abramoff MDM, Paulo J, Ram SJ (2004) Image processing with image. J Biophotonics Int 11(7):36–42

    Google Scholar 

  47. van Manen HJ, Otto C (2009) Cholesterol esters are detected by Raman microspectroscopy in HeLa cells. J Raman Spectrosc 40(2):117–118

    Article  Google Scholar 

  48. Hawi SR, Nithipatikom K, Wohlfeil ER, Adar F, Campbell WB (1997) Raman microspectroscopy of intracellular cholesterol crystals in cultured bovine coronary artery endothelial cells. J Lipid Res 38(8):1591–1597

    CAS  Google Scholar 

  49. Baraga JJ, Feld MS, Rava RP (1992) Insitu optical histochemistry of human artery using near-infrared Fourier-transform Raman-spectroscopy. P Natl Acad Sci USA 89(8):3473–3477

    Article  CAS  Google Scholar 

  50. Lotem H, Lynch RT, Bloembergen N (1976) Interference between Raman resonances in 4-wave difference mixing. Phys Rev A 14(5):1748–1755

    Article  CAS  Google Scholar 

  51. Greenspan P, Mayer EP, Fowler SD (1985) Nile Red—a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(3):965–973

    Article  CAS  Google Scholar 

  52. Glasbey CA (1993) An analysis of histogram-based thresholding algorithms. Cvgip-Graph Model Im 55(6):532–537

    Article  Google Scholar 

  53. Zack GW, Rogers WE, Latt SA (1977) Automatic-measurement of sister chromatid exchange frequency. J Histochem Cytochem 25(7):741–753

    Article  CAS  Google Scholar 

  54. Shanbhag AG (1994) Utilization of information measure as a means of image thresholding. Cvgip-Graph Model Im 56(5):414–419

    Article  Google Scholar 

  55. Doyle W (1962) Operations useful for similarity-invariant pattern recognition. J ACM 9(3):259–267

    Article  Google Scholar 

  56. Tsai WH (1985) Moment-preserving thresholding—a new approach. Comput Vis Graph 29(3):377–393

    Article  Google Scholar 

  57. Li CH, Lee CK (1993) Minimum cross entropy thresholding. Pattern Recognit 26(4):617–625

    Article  Google Scholar 

  58. Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8(8):630–632

    Article  Google Scholar 

  59. Huang LK, Wang MJJ (1995) Image thresholding by minimizing the measures of fuzziness. Pattern Recogn 28(1):41–51

    Article  Google Scholar 

  60. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19(1):41–47

    Article  Google Scholar 

  61. Yasnoff WA, Mui JK, Bacus JW (1977) Error measures for scene segmentation. Pattern Recogn 9(4):217–231

    Article  Google Scholar 

  62. Gachet D, Billard F, Sandeau N, Rigneault H (2007) Coherent anti-Stokes Raman scattering (CARS) microscopy imaging at interfaces: evidence of interference effects. Opt Express 15(16):10408–10420

    Article  CAS  Google Scholar 

  63. Adiga U, Taylor D, Bell B, Ponomareva L, Kanzlemar S, Kramer R, Saldanha R, Nelson S, Lamkin TJ (2012) Automated analysis and classification of infected macrophages using bright-field amplitude contrast data. J Biomol Screen 17(3):401–408

    Article  CAS  Google Scholar 

  64. Brown AJ, Mander EL, Gelissen IC, Kritharides L, Dean RT, Jessup W (2000) Cholesterol and oxysterol metabolism and subcellular distribution in macrophage foam cells: accumulation of oxidized esters in lysosomes. J Lipid Res 41(2):226–236

    CAS  Google Scholar 

  65. Weibel GL, Joshi MR, Jerome WG, Bates SR, Yu KJ, Phillips MC, Rothblat GH (2012) Cytoskeleton disruption in J774 macrophages: consequences for lipid droplet formation and cholesterol flux. BBA-Mol Cell Biol Lipids 1821(3):464–472

    Article  CAS  Google Scholar 

  66. Avart SJ, Bernard DW, Jerome WG, Glick JM (1999) Cholesteryl ester hydrolysis in J774 macrophages occurs in the cytoplasm and lysosomes. J Lipid Res 40(3):405–414

    CAS  Google Scholar 

  67. Rodrigues AD, Lin JH (2001) Screening of drug candidates for their drug-drug interaction potential. Curr Opin Chem Biol 5(4):396–401

    Article  CAS  Google Scholar 

  68. Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55(1):170–171

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Academia Sinica and the National Science Council of the Republic of China (Grant No. NSC-101-2113-M-001-022-MY2). We are grateful to Dr. Margaret Hsin-Jui Kuo (Academia Sinica) for her valuable discussion and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta-Chau Chang.

Additional information

Wei-Wen Chen and Chen-Hao Chien contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3043 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WW., Chien, CH., Wang, CL. et al. Automated quantitative analysis of lipid accumulation and hydrolysis in living macrophages with label-free imaging. Anal Bioanal Chem 405, 8549–8559 (2013). https://doi.org/10.1007/s00216-013-7251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7251-0

Keywords

Navigation