Skip to main content
Log in

Use, analysis, and regulation of pesticides in natural extracts, essential oils, concretes, and absolutes

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Natural extracts used by the fragrance and cosmetics industries, namely essential oils, concretes, resinoids, and absolutes, are produced from natural raw materials. These are often cultivated by use of monoculture techniques that involve the use of different classes of xenobiotica, including pesticides. Because of these pesticides’ potential effect on public health and the environment, laws regarding permitted residual levels of pesticides used in cultivation of raw materials for fragrance and cosmetic products are expected to become stricter. The purpose of this review is to present and classify pesticides commonly used in the cultivation of these natural raw materials. We will summarize the most recent regulations, and discuss publications on detection of pesticides via chemical analysis of raw natural extracts. Advances in analytical chemistry for identification and quantification of pesticides will be presented, including both sample preparation and modern separation and detection techniques, and examples of the identification and quantification of individual pesticides present in natural extracts, for example essential oils, will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anastas PT, Williamson TS (1996) Green Chemistry. Designing Chemistry for the Environment. American Chemical Society, Washington

    Book  Google Scholar 

  2. Sheldon RA (2008) Green and sustainable chemistry: challenges and perspectives. Green Chem 10:359–360

    Article  CAS  Google Scholar 

  3. Union des industries de la protection des plantes: Rapport d’activité 2011–2012, p29 Boulogne Billancourt, France

  4. Osborne JL (2012) Bumblebees and pesticides. Nature 491:43–45

    Article  CAS  Google Scholar 

  5. Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual– and colony–level traits in bees. Nature 491:105–108

    Article  CAS  Google Scholar 

  6. Garland SM, Menary RC, Davies NW, Oliver GS (2004) Practical approaches to the analyses for pesticide residues in essential oils, Rural Industries Research and Development Corporation, Australian Government, Publication No 04/109, pp. 105

  7. MAP/e-phy 06/02/2013 Link : http://e-phy.agriculture.gouv.fr/

  8. Council Directive 91/414/EEC (European Economic Community) of 15 July 1991 concerning the placing of plant protection products on the market

  9. Regulation no. 396/2005/CE and Regulation n° 1107/2009 of the European Parliament and the European Council of October 21st, 2009

  10. Filippi J-J, Lanfranchi D-A, Prado S, Baldovini N, Meierhenrich UJ (2006) Composition, enantiomeric distribution, and antibacterial activity of the essential oil of Achillea ligustica All. from Corsica. J Agric Food Chem 54:6308–6313

    Article  CAS  Google Scholar 

  11. Paillat L, Périchet C, Pierrat JP, Lavoine S, Filippi J-J, Meierhenrich UJ, Fernandez X (2012) Purification of vetiver alcohols and esters for quantitative high-performance thin-layer chromatography determination in Haitian vetiver essential oils and vetiver acetates. J Chromatogr A 1241:103–111

    Article  CAS  Google Scholar 

  12. Perriot R, Breme K, Meierhenrich UJ, Carenini E, Ferrando G, Baldovini N (2010) Chemical composition of French mimosa absolute oil. J Agric Food Chem 58:1844–1849

    Article  CAS  Google Scholar 

  13. Breme K, Tournayre P, Fernandez X, Meierhenrich UJ, Brevard H, Joulain D, Berdagué JL (2010) Characterization of volatile compounds of Indian cress absolute by GC-olfactometry/VIDEO-sniff and comprehensive two-dimensional gas chromatography. J Agric Food Chem 58:473–480

    Article  CAS  Google Scholar 

  14. Meierhenrich UJ, Golebiowski J, Fernandez X, Cabrol-Bass D (2004) The molecular basis of olfactory chemoreception, Angew Chem Int Ed Engl 43:6410–6412. Angew Chem 116:6570–6573

    Article  Google Scholar 

  15. Wolfe JM, Kluender KR, Levi DM (2006) Sensation & Perception. Sinauer Associates, Massachusetts, p 340

    Google Scholar 

  16. Richard H, Multon JL (1992) Les arômes alimentaires, Collection Sciences et techniques agro-alimentaires, Ed Lavoisier

  17. F Chemat (2011) Eco-extraction du végétal. Procédés innovants et solvants alternatifs, Technique et Ingénerie, Ed Dunod

  18. Khajeh M, Yaminib Y, Shariati S (2010) Comparison of essential oils compositions of Nepeta persica obtained by supercritical carbon dioxide extraction and steam distillation methods. Food Bioprod Process 88:227–232

    Article  CAS  Google Scholar 

  19. Donelian A, Carlson LHC, Lopes TJ, Machado RAF (2009) Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation. J Supercrit Fluids 48:15–20

    Article  CAS  Google Scholar 

  20. Abert Vian M, Fernandez X, Visinoni F, Chemat F (2008) Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. J Chromatogr A 1190:14–17

    Article  Google Scholar 

  21. Bousbia N, Abert Vian M, Ferhat MA, Meklati BY, Chemat F (2009) A new process for extraction of essential oil from citrus peels: Microwave hydrodiffusion and gravity. J Food Eng 90:409–413

    Article  Google Scholar 

  22. Garland SM, Davies NW, Menary RC (2004) The dissipation of tebuconazole and propiconazole in boronia (Boronia magastigma Nees). J Agric Food Chem 52:6200–6204

    Article  CAS  Google Scholar 

  23. Holden AJ, Chen L, Shaw IC (2001) Thermal stability of organophosphorus pesticide triazophos and its relevance in the assessment of risk to the consumer of triazophos residues in food. J Agric Food Chem 49:103–106

    Article  CAS  Google Scholar 

  24. Beyer A, Biziuk M (2008) Applications of sample preparation techniques in the analysis of pesticides and PCBs in food. Food Chem 108:669–680

    Article  CAS  Google Scholar 

  25. Nguyen TD, Lee MH, Lee GH (2010) Rapid determination of 95 pesticides in soybean oil using liquid–liquid extraction followed by centrifugation, freezing and dispersive solid phase extraction as cleanup steps and gas chromatography with mass spectrometric detection. Microchem J 95:113–119

    Article  CAS  Google Scholar 

  26. Wang W, Meng B, Xiaoxia Lu Y, Liu ST (2007) Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal Chim Acta 602:211–222

    Article  CAS  Google Scholar 

  27. Barriada-Pereira M, Concha-Grana E, Gonzalez-Castro MJ, Muniategui-Lorenzo S, Lopez-Mahıa P, Prada-Rodrıguez D, Fernandez-Fernandez E (2003) Microwave-assisted extraction versus Soxhlet extraction in the analysis of 21 organochlorine pesticides in plants. J Chromatogr A 1008:115–122

    Article  CAS  Google Scholar 

  28. Beyer A, Biziuk M (2010) Comparison of efficiency of different sorbents used during clean-up of extracts for determination of polychlorinated biphenyls and pesticide residues in low-fat food. Food Res Int 43:831–837

    Article  CAS  Google Scholar 

  29. Yang X, Zhang H, Liu Y, Wang J, Zhang YC, Dong AJ, Zhao HT, Sun CH, Cui J (2011) Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography–mass spectrometry: Determination of 88 pesticides in berries using SPE and GC-MS. Food Chem 127:855–865

    Article  CAS  Google Scholar 

  30. Di Muccio A, Fidente P, Attard Barbini D, Dommarco R, Seccia S, Morrica P (2006) Application of solid-phase extraction and liquid chromatography-mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. J Chromatogr A 1108:1–6

    Article  Google Scholar 

  31. Capriotti AL, Cavaliere C, Giansanti P, Gubbiotti R, Samperi R, Lagana A (2010) Recent developments in matrix solid-phase dispersion extraction. J Chromatogr A 1217:2521–2532

    Article  CAS  Google Scholar 

  32. Lacina O, Urbanova J, Poustka J, Hajslova J (2010) Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 1217:648–659

    Article  CAS  Google Scholar 

  33. Koesukwiwat U, Lehotay SJ, Leepipatpiboon N (2011) Fast, low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables. J Chromatogr A 1218:7039–7050

    Article  CAS  Google Scholar 

  34. Wilkowska A, Biziuk M (2011) Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem 125:803–812

    Article  CAS  Google Scholar 

  35. Guoqiang C, Pengying C, Renjiang L (2011) A multi-residue method for fast determination of pesticides in tea by ultra performance liquid chromatography-electrospray tandem mass spectrometry combined with modified QuEChERS sample preparation procedure. Food Chem 125:1406–1411

    Article  Google Scholar 

  36. Pan J, Xia X-X, Liang J (2008) Analysis of pesticide multi-residues in leafy vegetables by ultrasonic solvent extraction and liquid chromatography-tandem mass spectrometry. Ultrason Sonochem 15:25–32

    Article  Google Scholar 

  37. Quan C, Li S, Tian S, Xu H, Lin A, Gu L (2004) Supercritical fluid extraction and clean-up of organochlorine pesticides in ginseng. J Supercrit Fluids 31:149–157

    Article  CAS  Google Scholar 

  38. Punín Crespo MO, Lage Yusty MA (2005) Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples. Chemosphere 59:1407–1413

    Article  Google Scholar 

  39. Fuentes E, Báez ME, Quinones A (2008) Suitability of microwave-assisted extraction coupled with solid-phase extraction for organophosphorus pesticide determination in olive oil. J Chromatogr A 1207:38–45

    Article  CAS  Google Scholar 

  40. Liu L-B, Hashi Y, Qin Y-P, Zhoub H-X, Lin J-M (2007) Development of automated online gel permeation chromatography-gas chromatograph mass spectrometry for measuring multiresidual pesticides in agricultural products. J Chromatogr B 845:61–68

    Article  CAS  Google Scholar 

  41. Mourao Rodrigues A, Ferreira V, Vale Cardoso V, Ferreira E, Joao Benoliel M (2007) Determination of several pesticides in water by solid-phase extraction, liquid chromatography and electrospray tandem mass spectrometry. J Chromatogr A 1150:267–278

    Article  Google Scholar 

  42. Min L, Hashi Y, Yuanyuan S, Jinming L (2006) Determination of carbamate and organophosphorus pesticides in fruits and vegetables using liquid chromatography-mass spectrometry with dispersive solid phase extraction. Chin J Anal Chem 34:941–945

    Article  Google Scholar 

  43. Pico Y, la Farre M, Soler C, Barcel D (2007) Identification of unknown pesticides in fruits using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry Imazalil as a case study of quantification. J Chromatogr A 1176:123–134

    Article  CAS  Google Scholar 

  44. Rezic I, Horvat AJM, Babic S, Kastelan-Macan M (2005) Determination of pesticides in honey by ultrasonic solvent extraction and thin-layer chromatography. Ultrason Sonochem 12:477–481

    Article  CAS  Google Scholar 

  45. Ishibashi M, Ando T, Sakai M, Matsubara A, Uchikata T, Fukusaki E, Bamba T (2012) High-throughput simultaneous analysis of pesticides by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr A 1266:143–148

    Article  CAS  Google Scholar 

  46. Waters Corporation (2012) Diastereoselective separation of permethrinusing the AcquityUPC2 system, Application Note of Waters

  47. Barrek S, Paisse O, Grenier-Loustalot MF (2003) Analysis of pesticide residues in essential oils of citrus fruit by GC-MS and HPLC-MS after solid-phase extraction. Anal Bioanal Chem 376:157–161

    CAS  Google Scholar 

  48. Inman RD, Kiigemagi U, Deinzer ML (1981) Determination of chlorpyrifos and 3,5,6-trichloro-2-pyridinol residues in peppermint hay and peppermint oil. J Agric Food Chem 29:321–323

    Article  CAS  Google Scholar 

  49. Inman RD, Kiigemagi U, Deinzer ML (1983) Determination of carbofuran and 3-hydroxycarbofuran residues in peppermint hay and peppermint oil. J Agric Food Chem 31:918–919

    Article  CAS  Google Scholar 

  50. Inman RD, Kiigemagi U, Griffin DA, Deinzer ML (1983) Determination of the phenolic metabolites of carbofuran in peppermint hay and peppermint oil by multiple ion detection mass spectrometry. J Agric Food Chem 31:722–726

    Article  CAS  Google Scholar 

  51. Di Bella G, Saitta M, La Pera L, Alfa M, Dugo G (2004) Pesticide and plasticizer residues in bergamot essential oils from Calabria (Italy). Chemosphere 56:777–782

    Article  Google Scholar 

  52. Saitta M, Di Bella G, Salvo F, Lo Curto S, Dugo G (2000) Organochlorine pesticide residues in Italian citrus essential oils 1991–1996. J Agric Food Chem 48:797–801

    Article  CAS  Google Scholar 

  53. Bella D, Serrao L, Salvo F, Lo Turco V, Croce M, Dugo G (2006) Pesticide and plasticizer residues in biological citrus essential oils from 2003–2004. Flavour Fragrance J 21:497–501

    Article  Google Scholar 

  54. Fillâtre Y, Rondeau D, Bonnet B, Daguin A, Jadas-Hecart A, Communal PY (2011) Multiresidue analysis of multiclass pesticides in lavandin essential oil by lc/ms/ms using the scheduled selected reaction monitoring mode. Anal Chem 83:109–117

    Article  Google Scholar 

  55. Groenewoud KM, Davies NW, Menary RC (1995) Determination of propiconazole residue in boronia extract (concrete). J Agric Food Chem 43:1230–1232

    Article  CAS  Google Scholar 

  56. Garland SM, Menary RC, Davies NM (1999) Dissipation of propiconazole and tebuconazole in peppermint crops (Mentha piperita Labiatae) and their residues in distilled oils. J Agric Food Chem 47:294–298

    Article  CAS  Google Scholar 

  57. Meinert C, Meierhenrich UJ (2012) A new dimension in separation science - comprehensive two-dimensional gas chromatography. Angew Chem Int Ed 51:10460–10470; Angew Chem 124:10610–10621

    Google Scholar 

Download references

Acknowledgments

We thank the “Association Nationale de la Recherche et de la Technologie” (ANRT) for CIFRE funding for the Ph.D. thesis of O.T. We acknowledge financial and scientific support of International Flavors and Fragrances (IFF) France and Waters Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe J. Meierhenrich.

Additional information

Published in the special issue Analytical Science in France with guest editors Christian Rolando and Philippe Garrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tascone, O., Roy, C., Filippi, JJ. et al. Use, analysis, and regulation of pesticides in natural extracts, essential oils, concretes, and absolutes. Anal Bioanal Chem 406, 971–980 (2014). https://doi.org/10.1007/s00216-013-7102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7102-z

Keywords

Navigation