Skip to main content
Log in

Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS) measurements. Using nanofabrication methods, a metallic nanostructure was prepared by electron-beam lithography onto a glass coverslip surface and embedded within a microfluidic channel made of polydimethylsiloxane, allowing one to monitor in situ SERS fingerprint spectra from the adsorbed molecules on the metallic nanostructures. The gold structure was designed so that its localized surface plasmon resonance matches the excitation wavelength used for the Raman measurement. This optofluidic device is then used to detect the presence of a toxin, namely ochratoxin-A (OTA), in a confined environment, using very small amounts of chemicals, and short data acquisition times, by taking advantage of the optical properties of a SERS platform to magnify the Raman signals of the aptameric monolayer system and avoiding chemical labeling of the aptamer or the OTA target.

Aptamer detection of OTA within a SERS/microfluidic channel

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamamoto R, Katahira M, Nishihira A, Baba T, Taira K, Kumar PKR (2000) Genes Cells 5:371–388

    Article  CAS  Google Scholar 

  2. Fukuda K, Vishnuvardhan D, Sekiya S, Hwang J, Kakiuchi N, Kazunari T, Shimotohno K, Kumar PKR, Nishikawa S (2000) Eur J Biochem 267:3685–3694

    Article  CAS  Google Scholar 

  3. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Nature 355:564–566

    Article  CAS  Google Scholar 

  4. Torres-Chavolla E, Alocilja EC (2009) Biosens Bioelectron 24:3175–3182

    Article  CAS  Google Scholar 

  5. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) J Am Chem Soc 128:3138–3139

    Article  CAS  Google Scholar 

  6. Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (1996) Nucleic Acids Res 24:1029–1036

    Article  CAS  Google Scholar 

  7. Ueyama H, Takagi M, Takenaka S (2002) J Am Chem Soc 124:14286–14287

    Article  CAS  Google Scholar 

  8. Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C (2008) Small 4:1196–1200

    Article  CAS  Google Scholar 

  9. Ellington AD, Szostak JW (1990) Nature 346:818–822

    Article  CAS  Google Scholar 

  10. Tuerk C, Gold L (1990) Science 249:505–510

    Article  CAS  Google Scholar 

  11. Barthelmebs L, Jonca J, Hayat A, Prieto-Simon B, Marty J-L (2010) Food Control 22:737–743

    Article  Google Scholar 

  12. Cruz-Aguado JA, Penner G (2008) J Agric Food Chem 56:10456–10461

    Article  CAS  Google Scholar 

  13. Cruz-Aguado JA, Penner G (2008) Anal Chem 80:8853–8855

    Article  CAS  Google Scholar 

  14. De Girolamo A, McKeague M, Miller JD, DeRosa MC, Visconti A (2011) Food Chem 127:1378–1384

    Article  Google Scholar 

  15. Merino EJ, Weeks KM (2005) J Am Chem Soc 127:12766–12767

    Article  CAS  Google Scholar 

  16. Nutiu R, Li Y (2005) Angew Chem Int Ed 44:5464–5467

    Article  CAS  Google Scholar 

  17. Perrier S, Ravelet C, Guieu V, Fize J, Roy B, Perigaud C, Peyrin E (2010) Biosens Bioelec 25:1652–1657

    Article  CAS  Google Scholar 

  18. Rhouati A, Paniel N, Meraihi Z, Marty J-L (2011) Food Control 22:1790–1796

    Article  CAS  Google Scholar 

  19. Ruta J, Perrier S, Ravelet C, Fize J, Peyrin E (2009) Anal Chem 81:7468–7473

    Article  CAS  Google Scholar 

  20. Sheng L, Ren J, Miao Y, Wang J, Wang E (2011) Biosens Bioelectron 26:3494–3499

    Article  CAS  Google Scholar 

  21. Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) J Am Chem Soc 129:3814–3815

    Article  CAS  Google Scholar 

  22. Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z, Wang H, Tan W (2008) J Am Chem Soc 130:11268–11269

    Article  CAS  Google Scholar 

  23. Wang L, Chen W, Ma W, Liu L, Ma W, Zhao Y, Zhu Y, Xu L, Kuang H, Xu C (2011) Chem Commun 47:1574–1576

    Article  CAS  Google Scholar 

  24. Zhu Z, Ravelet C, Perrier S, Guieu V, Roy B, Perigaud C, Peyrin E (2010) Anal Chem 82:4613–4620

    Article  CAS  Google Scholar 

  25. Kidd A, Guieu V, Perrier S, Ravelet C, Peyrin E (2011) Anal Bioanal Chem 401(10):3229–3234

    Article  CAS  Google Scholar 

  26. Zhu Z, Schmidt T, Mahrous M, Guieu V, Perrier S, Ravelet C, Peyrin E (2011) Anal Chim Acta 707(1–2):191–196

    Article  CAS  Google Scholar 

  27. Bonel L, Vidal JC, Duato P, Castillo JR (2011) Biosens Bioelectron 26:3254–3259

    Article  CAS  Google Scholar 

  28. Du Y, Li B, Wang F, Dong S (2009) Biosens Bioelectron 24:1979–1983

    Article  CAS  Google Scholar 

  29. Ikebukuro K, Kiyohara C, Sode K (2004) Anal Lett 37:2901–2909

    Article  CAS  Google Scholar 

  30. Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Electroanalysis 21:1237–1250

    Article  CAS  Google Scholar 

  31. Wang Z, Duan N, Hun X, Wu S (2010) Anal Bioanal Chem 398:2125–2132

    Article  CAS  Google Scholar 

  32. Zuo X, Xiao Y, Plaxco KW (2009) J Am Chem Soc 131:6944–6945

    Article  CAS  Google Scholar 

  33. Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Anal Chem 82(19):8131–8136

    Article  CAS  Google Scholar 

  34. Wanga G, Wanga Y, Chena L, Choo J (2010) Biosens Bioelectron 25:1859–1868

    Article  Google Scholar 

  35. Yang C, Wang Y, Marty J-L, Yang X (2011) Biosens Bioelec 26:2724–2727

    Article  CAS  Google Scholar 

  36. Guieu V, Ravelet C, Perrier S, Zhu Z, Cayez S, Peyrin E (2011) Anal Chim Acta 706(2):349–353

    Article  CAS  Google Scholar 

  37. Breuzard G, Millot J-M, Riou J-F, Manfait M (2003) Anal Chem 75:4305–4311

    Article  CAS  Google Scholar 

  38. Chen J, Jiang J, Gao X, Liu G, Shen G, Yu R (2008) Chem Eur J 14:8374–8382

    Article  CAS  Google Scholar 

  39. Kim NH, Lee SJ, Moskovits M (2010) Nano Lett 10:4181–4185

    Article  CAS  Google Scholar 

  40. Neumann O, Zhang D, Tam F, Lal S, Wittung-Stafshede P, Halas NJ (2009) Anal Chem 81:10002–10006

    Article  CAS  Google Scholar 

  41. Ochsenkühn MA, Campbell CJ (2010) Chem Commun 46:2799–2801

    Article  Google Scholar 

  42. Pagba CV, Lanea SM, Wachsmann-Hogiu S (2010) J Raman Spectrosc 41:241–247

    CAS  Google Scholar 

  43. Wei C, Jia G, Yuan J, Feng Z, Li C (2006) Biochemistry 45:6681–6691

    Article  CAS  Google Scholar 

  44. Huh YS, Erickson D (2010) Biosens Bioelectron 25:1240–1243

    Article  CAS  Google Scholar 

  45. Rusciano G, De Luca AC, Pesce G, Sasso A, Oliviero G, Amato J, Borbone N, D'Errico S, Piccialli V, Piccialli G, Mayol L (2011) Anal Chem 17:6849–6855

    Article  Google Scholar 

  46. Hernandez Hierro JM, Garcia-Villanova RJ, Rodriguez Torrero P, Toruno Fonseca IM (2008) J Agric Food Chem 56:751–756

    Article  CAS  Google Scholar 

  47. Pfohl-Leszkowicz A, Manderville RA (2007) Mol Nutr Food Res 51:61–99

    Article  CAS  Google Scholar 

  48. Serra Bonvehi J (2004) J Agric Food Chem 52:6347–6352

    Article  Google Scholar 

  49. Kabak B (2009) Food Chem Toxicol 47:348–352

    Article  CAS  Google Scholar 

  50. Medina A, Valle-Algarra FM, Gimeno-Adelantado JV, Mateo R, Mateo F, Jimenez M (2006) J Chromat A 1121:178–183

    Article  CAS  Google Scholar 

  51. Noonim P, Mahakarnchanakul W, Nielsen KF, Frisvad JC, Samson RA (2008) Int J Food Microbiol 128:197–202

    Article  CAS  Google Scholar 

  52. Zezza F, Longobardi F, Pascale M, Eremin SA, Visconti A (2009) Anal Bioanal Chem 395:1317–1323

    Article  CAS  Google Scholar 

  53. Coronel MB, Sanchis V, Ramos AJ, Marin S (2009) Food Chem Toxicol 47:2847–2852

    Article  CAS  Google Scholar 

  54. McKeague M, Bradley CR, Girolamo AD, Visconti A, Miller JD, DeRosa MC (2010) Int J Mol Sci 11:4864–4881

    Article  CAS  Google Scholar 

  55. O'Brien E, Dietrich DR (2005) Crit Rev Toxicol 35:33–60

    Article  Google Scholar 

  56. Li T, Jeon K-S, Suh YD, Kim MG (2011) Chem Commun 32:9098–9100

    Article  Google Scholar 

  57. Vidal JC, Duato P, Bonel L, Castillo JR (2009) Anal Bioanal Chem 394:575–582

    Article  CAS  Google Scholar 

  58. Galarreta BC, Norton PR, Lagugné-Labarthet F (2011) Langmuir 27(4):1494–1498

    Article  CAS  Google Scholar 

  59. Haes AJ, Van Duyne RP (2002) J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  60. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  61. Xu Y, Takai M, Konno T, Ishihara K (2007) Lab Chip 7:196–206

    Article  Google Scholar 

  62. West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80(12):4403–4419

    Article  CAS  Google Scholar 

  63. Mingxu Y, Yan C, Lu P, Da H, Bincheng Y, Bangce Y, Weihong T (2011) Chem Science 2:1003–1010

    Article  Google Scholar 

  64. Galarreta BC, Harté E, Marquestaut N, Norton PR, Lagugné-Labarthet F (2010) Phys Chem Chem Phys 12:6810–6816

    Article  CAS  Google Scholar 

  65. Patrito N, McLachlan JM, Faria SN, Chan J, Norton PR (2007) Lab Chip 7:1813–1818

    Article  CAS  Google Scholar 

  66. Balamurugan S, Obubuafo A, Soper SA, McCarley RL, Spivak DA (2006) Langmuir 22:6446–6453

    Article  CAS  Google Scholar 

  67. Lakowicz JR (2006) Fluorescence anisotropy. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, pp 353–381

    Chapter  Google Scholar 

  68. Lafleur L, Rice J, Thomas GJ (1972) Biopolymers 11:2423–2437

    Article  CAS  Google Scholar 

  69. Nishimura Y, Tsuboi M (1986) J Mol Struct 146:123–153

    Article  CAS  Google Scholar 

  70. Prescott B, Steinmetz W, Thomas GJ (1984) Biopolymers 23:235–256

    Article  CAS  Google Scholar 

  71. Rappoport D, Shim S, Aspuru-Guzik A (2011) Phys Chem Lett 2:1254–1260

    Article  CAS  Google Scholar 

  72. Thomas GJ (1999) Annu Rev Biophys Biomol Struct 28:1–27

    Article  CAS  Google Scholar 

  73. Bredenkamp MW, Dillen JLM, van Rooyen PH, Steyn PS (1989) J Chem Soc Perkin Trans II:1835–1839

    Google Scholar 

  74. Galvis-Sánchez AC, Barros AS, Delgadillo I (2008) Anal Chim Acta 617:59–63

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the Nanofabrication Facility at Western University for the fabrication of the patterned substrates and microfluidic device. This research was funded by the Natural Sciences and Engineering Research Council of Canada Discovery Grant and by the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valérie Guieu or François Lagugné-Labarthet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galarreta, B.C., Tabatabaei, M., Guieu, V. et al. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Anal Bioanal Chem 405, 1613–1621 (2013). https://doi.org/10.1007/s00216-012-6557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6557-7

Keywords

Navigation