Skip to main content

Advertisement

Log in

Effect of changes in the deuterium content of drinking water on the hydrogen isotope ratio of urinary steroids in the context of sports drug testing

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The hydrogen isotope ratio (HIR) of body water and, therefore, of all endogenously synthesized compounds in humans, is mainly affected by the HIR of ingested drinking water. As a consequence, the entire organism and all of its synthesized substrates will reflect alterations in the isotope ratio of drinking water, which depends on the duration of exposure. To investigate the effect of this change on endogenous urinary steroids relevant to doping-control analysis the hydrogen isotope composition of potable water was suddenly enriched from -50 to 200 ‰ and maintained at this level for two weeks for two individuals. The steroids under investigation were 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 5α-androstane-3α,17β-diol, and 5β-androstane-3α,17β-diol (excreted as glucuronides) and ETIO, ANDRO and 3β-hydroxyandrost-5-en-17-one (excreted as sulfates). The HIR of body water was estimated by determination of the HIR of total native urine, to trace the induced changes. The hydrogen in steroids is partly derived from the total amount of body water and cholesterol-enrichment could be calculated by use of these data. Although the sum of changes in the isotopic composition of body water was 150 ‰, shifts of approximately 30 ‰ were observed for urinary steroids. Parallel enrichment in their HIR was observed for most of the steroids, and none of the differences between the HIR of individual steroids was elevated beyond recently established thresholds. This finding is important to sports drug testing because it supports the intended use of this novel and complementary methodology even in cases where athletes have drunk water of different HIR, a plausible and, presumably, inevitable scenario while traveling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Piper T, Thomas A, Thevis M, Saugy M (2012) Drug Test Anal 4:717–727

    Article  CAS  Google Scholar 

  2. Coplen TB (2011) Rapid Commun Mass Spectrom 25:2538–2560

    CAS  Google Scholar 

  3. Piper T, Baume N, Strahm E, Emery C, Saugy M (2012) Steroids 77:644–654

    Article  CAS  Google Scholar 

  4. Solberg HE (1993) J Int Fed Clin Chem 5:162–165

    CAS  Google Scholar 

  5. Flenker U, Güntner U, Schänzer W (2008) Steroids 73:408–416

    Article  CAS  Google Scholar 

  6. Piper T, Mareck U, Geyer H, Flenker U, Thevis M, Platen P, Schänzer W (2008) Rapid Commun Mass Spectrom 22:2161–2175

    Article  CAS  Google Scholar 

  7. Piper T, Opfermann G, Thevis M, Schänzer W (2010) Rapid Commun Mass Spectrom 24:3171–3181

    Article  CAS  Google Scholar 

  8. Friedman I (1953) Geochim Cosmochim Acta 4:89–103

    Article  CAS  Google Scholar 

  9. Bowen GJ, Winter DA, Spero HJ, Zierenberg RA, Reeder MD, Cerling TE, Ehleringer JR (2005) Rapid Commun Mass Spectrom 19:3442–3450

    Article  CAS  Google Scholar 

  10. Brencic M, Vreca P (2006) Rapid Commun Mass Spectrom 20:3205–3212

    Article  CAS  Google Scholar 

  11. Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE (2007) Water Resour Res 43:W03419

    Article  Google Scholar 

  12. Kim GE, Ryu JS, Shin WJ, Bong YS, Lee KS, Choi MS (2012) Rapid Commun Mass Spectrom 26:195–204

    Article  Google Scholar 

  13. Data available at: http://wateriso.eas.purdue.edu/waterisotopes/index.html (accessed 27.07.2012)

  14. Koehler K, Braun H, De Marees M, Fusch G, Fusch C, Mester J, Schänzer W (2010) J Sports Sci 13:1435–1449

    Article  Google Scholar 

  15. Mareck U, Geyer H, Opfermann G, Thevis M, Schänzer W (2008) J Mass Spectrom 43:877–891

    Article  CAS  Google Scholar 

  16. Piper T, Thevis M, Flenker U, Schänzer W (2009) Rapid Commun Mass Spectrom 23:1917–1926

    Article  CAS  Google Scholar 

  17. Werner RA, Brand WA (2001) Rapid Commun Mass Spectrom 15:501–519

    Article  CAS  Google Scholar 

  18. Docherty G, Jones V, Evershed P (2001) Rapid Commun Mass Spectrom 15:730–738

    Article  CAS  Google Scholar 

  19. Morrison J, Brockwell T, Merren T, Fourel F, Phillips AM (2001) Anal Chem 73:3570–3575

    Article  CAS  Google Scholar 

  20. Meier-Augenstein W (2010) In: Meier-Augenstein W (ed) Stable isotope forensics: an introduction to the forensic application of stable isotope analysis. Wiley, Oxford, pp 85–90

    Google Scholar 

  21. Schoeller DA, Colligan AS, Shriver T, Avak H, Bartok-Olson C (2000) J Mass Spectrom 35:1128–1132

    Article  CAS  Google Scholar 

  22. London IM, Rittenberg D (1950) J Biol Chem 184:687–691

    CAS  Google Scholar 

  23. Goodman DS, Noble RP (1968) J Clin Invest 47:231–241

    Article  CAS  Google Scholar 

  24. Goodman DWS, Smith FR, Seplowitz AH, Ramakrishnan R, Dell RB (1980) J Lipid Res 21:699–713

    CAS  Google Scholar 

  25. Neese RA, Faix D, Kletke C, Wu K, Wang AC, Shackleton CHL, Hellerstein MK (1993) Am J Physiol Endocrinol Metab 264:E136–E147

    CAS  Google Scholar 

  26. Zimmerman J (1986) Untersuchungen zum Nachweis von exogenen Gaben von Testosteron. Thesis, Deutsche Sporthochschule Köln, Cologne

  27. Rauth S (1994) Referenzbereiche von urinären Steroidkonzentrationen und Steroidquotienten. Thesis, Deutsche Sporthochschule Köln, Cologne

  28. Schoenheimer R, Rittenberg D (1937) J Biol Chem 121:235–253

    Google Scholar 

  29. Halford JO, Anderson LC, Bates JR (1934) J Am Chem Soc 56:491–492

    Article  CAS  Google Scholar 

  30. Vestergaard P (1978) Acta Endocrinol Suppl 217:96–120

    CAS  Google Scholar 

Download references

Acknowledgments

This project was partly funded by the Partnership for Clean Competition (PCC), the Federal Ministry of the Interior of the Federal Republic of Germany and the Manfred-Donike-Institute for Doping Analysis (MDI), Cologne. The authors would like to thank Dr Karsten Köhler for his assistance in interpreting the dietary records.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Piper.

Additional information

Published in the topical collection Isotope Ratio Measurements: New Developments and Applications with guest editors Klaus G. Heumann and Torsten C. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piper, T., Degenhardt, K., Federherr, E. et al. Effect of changes in the deuterium content of drinking water on the hydrogen isotope ratio of urinary steroids in the context of sports drug testing. Anal Bioanal Chem 405, 2911–2921 (2013). https://doi.org/10.1007/s00216-012-6504-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6504-7

Keywords

Navigation