Skip to main content

Advertisement

Log in

Single-molecule monitoring in living cells by use of fluorescence microscopy

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Monitoring single molecules in living cells is becoming a powerful tool for study of the location, dynamics, and kinetics of individual biomolecules in real time. In recent decades, several optical imaging techniques, for example epi-fluorescence microscopy, total internal reflection fluorescence microscopy (TIRFM), confocal microscopy, quasi-TIRFM, and single-point edge excitation subdiffraction microscopy (SPEED), have been developed, and their capability of capturing single-molecule dynamics in living cells has been demonstrated. In this review, we briefly summarize recent advances in the use of these imaging techniques for monitoring single-molecules in living cells for a better understanding of important biological processes, and discuss future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nie S, Zare RN (1997) Optical detection of single molecules. Annu Rev Biophys Biomol 26:567–596

    Article  CAS  Google Scholar 

  2. Lord SJ, Lee HD, Moerner W (2010) Single-molecule spectroscopy and imaging of biomolecules in living cells. Anal Chem 82:2192–2203

    Article  CAS  Google Scholar 

  3. Sako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nat Rev Mol Cell Biol 4:SS1–SS5

    Google Scholar 

  4. Moerner W, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62:2535–2538

    Article  CAS  Google Scholar 

  5. Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65:2716–2719

    Article  CAS  Google Scholar 

  6. Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  Google Scholar 

  7. Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2:168–172

    Article  CAS  Google Scholar 

  8. Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–1932

    Article  CAS  Google Scholar 

  9. Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA 100:9280

    Article  CAS  Google Scholar 

  10. Van Der Schaar HM, Rust MJ, Waarts BL, van der Ende-Metselaar H, Kuhn RJ, Wilschut J, Zhuang X, Smit JM (2007) Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81:12019–12028

    Article  Google Scholar 

  11. He K, Luo W, Zhang Y, Liu F, Liu D, Xu L, Qin L, Xiong C, Lu Z, Fang X (2010) Intercellular Transportation of Quantum Dots Mediated by Membrane Nanotubes. ACS Nano 4:3015–3022

    Article  CAS  Google Scholar 

  12. Guan Y, Xu M, Liang Z, Xu N, Lu Z, Han Q, Zhang Y, Zhao XS (2007) Heterogeneous transportation of α1B-adrenoceptor in living cells. Biophys Chem 127:149–154

    Article  CAS  Google Scholar 

  13. Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW (2012) Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82

    Article  CAS  Google Scholar 

  14. Miyake T, Tanii T, Sonobe H, Akahori R, Shimamoto N, Ueno T, Funatsu T, Ohdomari I (2008) Real-Time Imaging of Single-Molecule Fluorescence with a Zero-Mode Waveguide for the Analysis of Protein− Protein Interaction. Anal Chem 80:6018–6022

    Article  CAS  Google Scholar 

  15. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268

    Article  CAS  Google Scholar 

  16. Xiao Z, Ma X, Jiang Y, Zhao Z, Lai B, Liao J, Yue J, Fang X (2008) Single-molecule study of lateral mobility of epidermal growth factor receptor 2/HER2 on activation. J Phys Chem B 112:4140–4145

    Article  CAS  Google Scholar 

  17. Zhang W, Jiang Y, Wang Q, Ma X, Xiao Z, Zuo W, Fang X, Chen YG (2009) Single-molecule imaging reveals transforming growth factor β induced type II receptor dimerization. Proc Natl Acad Sci USA 106:15679

    Article  CAS  Google Scholar 

  18. Teramura Y, Ichinose J, Takagi H, Nishida K, Yanagida T, Sako Y (2006) Single-molecule analysis of epidermal growth factor binding on the surface of living cells. EMBO J 25(18):4215–4222

    Article  CAS  Google Scholar 

  19. Demuro A, Parker I (2004) Imaging single-channel calcium microdomains by total internal reflection microscopy. Biol Res 37:675–679

    Article  Google Scholar 

  20. Webb S, Needham S, Roberts S, Martin-Fernandez M (2006) Multidimensional single-molecule imaging in live cells using total-internal-reflection fluorescence microscopy. Opt Lett 31:2157–2159

    Article  CAS  Google Scholar 

  21. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4:319–321

    CAS  Google Scholar 

  22. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, Molloy JE, Birdsall NJM (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107:2693

    Article  CAS  Google Scholar 

  23. Zhang W, Yuan J, Yang Y, Xu L, Wang Q, Zuo W, Fang X, Chen YG (2010) Monomeric type I and type III transforming growth factor β receptors and their dimerization revealed by single-molecule imaging. Cell Res 20:1216–1223

    Article  CAS  Google Scholar 

  24. He KM, Fu YN, Zhang W, Yuan JH, Li ZJ, Lv ZZ, Zhang YY, Fang XH (2011) Single-Molecule Imaging Revealed Enhanced Dimerization of Transforming Growth Factor β Type II Receptors in Hypertrophic Cardiomyocytes. Biochem Biophys Res Commun 407:313–317

    Article  CAS  Google Scholar 

  25. Yang Y, Xu Y, Xia T, Chen F, Zhang C, Liang W, Lai L, Fang X (2011) A single-molecule study of the inhibition effect of Naringenin on transforming growth factor-β ligand–receptor binding. Chem Commun 47:5440–5442

    Article  CAS  Google Scholar 

  26. Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463

    Article  CAS  Google Scholar 

  27. Vukojević V, Heidkamp M, Ming Y, Johansson B, Terenius L, Rigler R (2008) Quantitative single-molecule imaging by confocal laser scanning microscopy. Proc Natl Acad Sci USA 105:18176–18181

    Article  Google Scholar 

  28. Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13:161–167

    Article  CAS  Google Scholar 

  29. Yamagishi M, Ishihama Y, Shirasaki Y, Kurama H, Funatsu T (2009) Single-molecule imaging of β-actin mRNAs in the cytoplasm of a living cell. Exp Cell Res 315:1142–1147

    Article  CAS  Google Scholar 

  30. Zhang K, Osakada Y, Vrljic M, Chen L, Mudrakola HV, Cui B (2010) Single-molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip 10:2566–2573

    Article  CAS  Google Scholar 

  31. Cui BX, Wu CB, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu S (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104:13666–13671

    Article  CAS  Google Scholar 

  32. Ma J, Yang W (2010) Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci USA 107:7305–7310

    Article  CAS  Google Scholar 

  33. Pavani SRP, DeLuca JG, Piestun R (2009) Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system. Opt Express 17:19644–19655

    Article  CAS  Google Scholar 

  34. Liu S, Hua H (2010) A systematic method for designing depth-fused multi-focal plane three-dimensional displays. Opt Express 18:11562–11573

    Article  Google Scholar 

  35. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    Article  CAS  Google Scholar 

  36. Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–505

    Article  CAS  Google Scholar 

  37. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, Von Middendorff C, Schönle A (2008) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2013CB933701, 2011CB911001), NSFC (21127901, 21121063), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., He, K., Xia, T. et al. Single-molecule monitoring in living cells by use of fluorescence microscopy. Anal Bioanal Chem 405, 43–49 (2013). https://doi.org/10.1007/s00216-012-6373-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6373-0

Keywords

Navigation