Skip to main content
Log in

Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemistry can be used for fabrication and characterization of mesoporous oxide films. First, this review provides insight into the methods used to prepare templated mesoporous thin films on an electrode surface, i.e., evaporation-induced self-assembly (EISA) and electrochemically assisted self-assembly (EASA). Electrochemical characterization of mass transport processes in pure and organically functionalized mesoporous oxide films is then discussed. The electrochemical response can be basically restricted by the electron/mass transfer reaction at the electrode–film interface and diffusion through mesopore channels. The contributions of cyclic voltammetry, hydrodynamic voltammetry, electrochemical impedance spectroscopy, and scanning electrochemical microscopy to the characterization of films with distinct mesostructures are finally described, with special emphasis on identification of conditions that can affect the electrochemical response recorded with such modified electrodes.

Permeability through mesoporous thin films

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    CAS  Google Scholar 

  2. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    CAS  Google Scholar 

  3. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138

    Google Scholar 

  4. Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Hierarchically ordered oxides. Science 282:2244–2246

    CAS  Google Scholar 

  5. Patarin J, Lebeau B, Zana R (2002) Recent advances in the formation mechanisms of organized mesoporous materials. Curr Opin Colloid Interface Sci 7:107–115

    CAS  Google Scholar 

  6. Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20:682–737

    CAS  Google Scholar 

  7. Fan H, Reed S, Baer T, Schunk R, López GP, Brinker CJ (2001) Hierarchically structured functional porous silica and composite produced by evaporation-induced self-assembly. Microporous Mesoporous Mater 44-45:625–637

    CAS  Google Scholar 

  8. Mougenot M, Lejeune M, Baumard JF, Boissière C, Ribot F, Grosso D, Sanchez C, Noguera R (2006) Ink jet printing of microdot arrays of mesostructured silica. J Am Ceram Soc 89:1876–1882

    CAS  Google Scholar 

  9. Yuan Z-Y, Su B-L (2006) Insights into hierarchically meso–macroporous structured materials. J Mater Chem 16:663–677

    CAS  Google Scholar 

  10. Tiemann M (2008) Repeated templating. Chem Mater 20:961–971

    CAS  Google Scholar 

  11. Shi Y, Wan Y, Zhao D (2011) Ordered mesoporous non-oxide materials. Chem Soc Rev 40:3854–3878

    CAS  Google Scholar 

  12. Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10:2950–2963

    CAS  Google Scholar 

  13. Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic-organic mesoporous silicates - nanoscopic reactors coming of age. Adv. Mater. 1403–1419.

  14. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) silica-based mesoporous organic – inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251

    CAS  Google Scholar 

  15. Yang Q, Liu J, Zhang L, Li C (2009) Functionalized periodic mesoporous organosilicas for catalysis. J Mater Chem 19:1945–1955

    CAS  Google Scholar 

  16. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissière C, Nicole L, Boissiere C (2010) “Chimie douce”: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. C R Chim 13:3–39

    CAS  Google Scholar 

  17. Antonietti M, Ozin GA (2004) Promises and problems of mesoscale materials chemistry or why meso? Chem Eur J 10:28–41

    CAS  Google Scholar 

  18. Rao Y, Antonelli DM (2009) Mesoporous transition metal oxides: characterization and applications in heterogeneous catalysis. J Mater Chem 19:1937–1944

    CAS  Google Scholar 

  19. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605

    CAS  Google Scholar 

  20. Ismail AA, Bahnemann DW (2011) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21:11686–11707

    CAS  Google Scholar 

  21. Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47:1384–1404

    CAS  Google Scholar 

  22. Pan JH, Zhao XS, Lee WI (2011) Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications. Chem Eng J 170:363–380

    CAS  Google Scholar 

  23. Walcarius A, Collinson MM (2009) Analytical chemistry with silica sol–gels: traditional routes to new materials for chemical analysis. Annu Rev Anal Chem 2:121–143

    CAS  Google Scholar 

  24. Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40:863–873

    CAS  Google Scholar 

  25. Aggarwal P, Tolley HD, Lee ML (2012) Monolithic bed structure for capillary liquid chromatography. J Chromatogr A 1219:1–14

    CAS  Google Scholar 

  26. Walcarius A (2005) Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials. CR Chim 8:693–712

    CAS  Google Scholar 

  27. Walcarius A (2008) Electroanalytical Applications of Microporous Zeolites and Mesoporous (Organo)Silicas: Recent Trends. Electroanalysis 20:711–738

    CAS  Google Scholar 

  28. Walcarius A, Kuhn A (2008) Ordered porous thin films in electrochemical analysis. Trends Anal Chem 27:593–603

    CAS  Google Scholar 

  29. Walcarius A (2010) Template-directed porous electrodes in electroanalysis. Anal Bioanal Chem 396:261–272

    CAS  Google Scholar 

  30. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244

    Google Scholar 

  31. Tanev PT, Pinnavaia TJ (1996) Biomimetic Templating of porous lamellar silicas by vesicular surfactant assemblies. Science 271:1267–1269

    CAS  Google Scholar 

  32. Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389:364–368

    CAS  Google Scholar 

  33. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585

    CAS  Google Scholar 

  34. Grosso D (2011) How to exploit the full potential of the dip-coating process to better control film formation. J Mater Chem 21:17033–17038

    CAS  Google Scholar 

  35. Grosso D, Cagnol F, Soler-Illia GJ de AA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 14:309–322

  36. Laberty-Robert C, Kuemmel M, Allouche J, Boissière C, Nicole L, Grosso D, Sanchez C (2008) Sol–gel route to advanced nanoelectrode arrays (NEA) based on titania gold nanocomposites. J Mater Chem 18:1216–1221

    CAS  Google Scholar 

  37. Smarsly B, Fattakhova-Rohlfing D, Smarsly B, Fattakhova-Rohlfing D (2009) Evaporation-induced self-assembly for the preparation of porous metal oxide films. In: Mitzi DB (ed) Solution Processing of Inorganic Materials. John Wiley & Sons, Inc, Hoboken, pp 283–312

    Google Scholar 

  38. Lytle JC, Stein A (2006) Recent progress in syntheses and applications of inverse opals and related macroporous materials prepared by colloidal crystal templating. Annu Rev Nano Res 1:1–79

    CAS  Google Scholar 

  39. Innocenzi P, Malfatti L, Soler-Illia GJAA (2011) Hierarchical mesoporous films: from self-assembly to porosity with different length scales. Chem Mater 23:2501–2509

    CAS  Google Scholar 

  40. Zhao B, Collinson MM (2010) Well-defined hierarchical templates for multimodal porous material fabrication. Chem Mater 22:4312–4319

    CAS  Google Scholar 

  41. Kanungo M, Deepa PN, Collinson MM (2004) Template-directed formation of hemispherical cavities of varying depth and diameter in a silicate matrix prepared by the sol–gel process. Chem Mater 16:5535–5541

    CAS  Google Scholar 

  42. Therese G, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12:1195–1204

    CAS  Google Scholar 

  43. Pauporté T, Goux A, Kahn-Harari A, de Tacconi N, Chenthamarakshan CR, Rajeshwar K, Lincot D (2003) Cathodic electrodeposition of mixed oxide thin films. J Phys Chem Solids 64:1737–1742

    Google Scholar 

  44. Shacham R, Avnir D, Mandler D (1999) Electrodeposition of methylated sol–gel films on conducting surfaces. Adv Mater 11:384–388

    CAS  Google Scholar 

  45. Sibottier E, Sayen S, Gaboriaud F, Walcarius A (2006) Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups. Langmuir 22:8366–8373

    CAS  Google Scholar 

  46. Choi K-S, Lichtenegger HC, Stucky GD, McFarland EW (2002) Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid?liquid interfaces. J Am Chem Soc 124:12402–12403

    CAS  Google Scholar 

  47. Baeck S-H, Choi K-S, Jaramillo TF, Stucky GD, McFarland EW (2003) Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv Mater 15:1269–1273

    CAS  Google Scholar 

  48. Tan Y, Srinivasan S, Choi K-S (2005) Electrochemical deposition of mesoporous nickel hydroxide films from dilute surfactant solutions. J Am Chem Soc 127:3596–3604

    CAS  Google Scholar 

  49. Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Electrochemically assisted self-assembly of mesoporous silica thin films. Nature Mater 6:602–608

    CAS  Google Scholar 

  50. Goux A, Etienne M, Aubert E, Lecomte C, Ghanbaja J, Walcarius A (2009) Oriented mesoporous silica films obtained by electro-assisted self-assembly (EASA). Chem Mater 21:731–741

    CAS  Google Scholar 

  51. Etienne M, Sallard S, Schröder M, Guillemin Y, Mascotto S, Smarsly BM, Walcarius A (2010) Electrochemical generation of thin silica films with hierarchical porosity. Chem Mater 22:3426–3432

    CAS  Google Scholar 

  52. Guillemin Y, Etienne M, Sibottier E, Walcarius A (2011) Microscale controlled electrogeneration of patterned mesoporous silica thin films. Chem Mater 23:5313–5322

    CAS  Google Scholar 

  53. Liu L, Toledano R, Danieli T, Zhang J-Q, Hu J-M, Mandler D (2011) Electrochemically patterning sol–gel structures on conducting and insulating surfaces. Chem Commun 47:6909–6911

    CAS  Google Scholar 

  54. Nicole L, Boissière C, Grosso D, Quach A, Sanchez C (2005) Mesostructured hybrid organic–inorganic thin films. J Mater Chem 15:3598–3627

    CAS  Google Scholar 

  55. Vansant EF, Van der Voort P, Vrancken KC (1995) Characterisation and chemical modification of the silica surface. Elsevier, The Netherlands

    Google Scholar 

  56. Impens NRE, Van der Voort P, Vansant E (1999) Silylation of micro-, meso- and non-porous oxides: a review. Microporous Mesoporous Mater 28:217–232

    CAS  Google Scholar 

  57. Angelomé PC, Aldabe-Bilmes S, Calvo ME, Crepaldi EL, Grosso D, Sanchez C, Soler-Illia GJAA (2005) Hybrid non-silica mesoporous thin films. New J Chem 29:59–63

    Google Scholar 

  58. Angelomé PC, Soler-Illia GJAA (2005) Chem Mater 17:322–331

    Google Scholar 

  59. Martínez-Ferrero E, Franc G, Mazères S, Turrin C-O, Boissière C, Caminade A-M, Majoral J-P, Sanchez C (2008) Optical properties of hybrid dendritic-mesoporous titania nanocomposite films. Chem Eur J 14:7658–7669

    Google Scholar 

  60. Ide A, Drisko GL, Scales N, Luca V, Schiesser CH, Caruso RA (2011) Monitoring bisphosphonate surface functionalization and acid stability of hierarchically porous titanium zirconium oxides. Langmuir 27:12985–12995

    CAS  Google Scholar 

  61. Hong L-Y, Oh S-Y, Matsuda A, Lee C-S, Kim D-P (2011) Hydrophilic and mesoporous SiO2–TiO2–SO3H system for fuel cell membrane applications. Electrochim Acta 56:3108–3114

    CAS  Google Scholar 

  62. Burkett SL, Sims SD, Mann S (1996) Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem Commun 1367–1368

  63. Macquarrie DJ (1996) Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM. Chem Commun 1961–1962

  64. Cagnol F, Grosso D, Sanchez C (2004) A general one-pot process leading to highly functionalised ordered mesoporous silica films. Chem Commun 1742–1743

  65. Lim MH, Stein A (1999) Comparative studies of grafting and direct syntheses of inorganic–organic hybrid mesoporous materials. Chem Mater 11:3285–3295

    CAS  Google Scholar 

  66. Mercier L, Pinnavaia TJ (2000) Direct synthesis of hybrid organic-inorganic nanoporous silica by a neutral amine assembly route: structure-function control by stoichiometric incorporation of organosiloxane molecules. Chem Mater 12:188–196

    CAS  Google Scholar 

  67. Corriu RJP, Lancelle-Beltran E, Mehdi A, Reyé C, Brandès S, Guilard R (2002) Ordered mesoporous hybrid materials containing cobalt(ii) Schiff base complex. J Mater Chem 12:1355–1362

    CAS  Google Scholar 

  68. Etienne M, Goux A, Sibottier E, Walcarius A (2009) Oriented mesoporous organosilica films on electrode: a new class of nanomaterials for sensing. J Nanosci Nanotechnol 9:2398–2406

    CAS  Google Scholar 

  69. Asefa T, MacLachlan M, Coombs N, Ozin GA (1999) Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402:867–871

    CAS  Google Scholar 

  70. Melde BJ, Holland BT, Blanford CF, Stein A (1999) Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem Mater 11:3302–3308

    CAS  Google Scholar 

  71. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc 121:9611–9614

    CAS  Google Scholar 

  72. Shea KJ, Moreau J, Loy DA, Corriu RJP, Boury B (2004) Bridged polysilsesquioxanes. Molecular-engineering nanostructured hybrid organic–inorganic materials. In: Gomez-Romero P, Sanchez C (eds) Functional Hybrid Materials. Wiley–VCH, Weinheim, pp 50–85

    Google Scholar 

  73. Hatton B, Landskron K, Whitnall W, Perovic D, Ozin GA (2005) Past, present, and future of periodic mesoporous organosilicas-the PMOs. Acc Chem Res 38:305–312

    CAS  Google Scholar 

  74. Fattakhova Rohlfing D, Rathouský J, Rohlfing Y, Bartels O, Wark M (2005) Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests. Langmuir 21:11320–11329

    Google Scholar 

  75. Sel O, Sallard S, Brezesinski T, Rathouský J, Dunphy DR, Collord A, Smarsly BM (2007) Periodically ordered meso- and macroporous SiO2 thin films and their induced electrochemical activity as a function of pore hierarchy. Adv Funct Mater 17:3241–3250

    CAS  Google Scholar 

  76. Martinez-Ferrero E, Grosso D, Boissière C, Sanchez C, Oms O, Leclercq D, Vioux A, Miomandre F, Audebert P (2006) Electrochemical investigations into ferrocenylphosphonic acid functionalized mesostructured porous nanocrystalline titanium oxide films. J Mater Chem 16:3762–3767

    CAS  Google Scholar 

  77. Walcarius A (2001) Electroanalysis with pure, chemically modified and sol–gel-derived silica-based materials. Electroanalysis 13:701–718

    CAS  Google Scholar 

  78. Bae JH, Han J-H, Chung TD (2012) Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys Chem Chem Phys 14:448–463

    CAS  Google Scholar 

  79. Etienne M, Quach A, Grosso D, Nicole L, Sanchez C, Walcarius A (2007) Molecular transport into mesostructured silica thin films: electrochemical monitoring and comparison between p6 m, P63/mmc, and Pm3n structures. Chem Mater 19:844–856

    CAS  Google Scholar 

  80. Goux A, Ghanbaja J, Walcarius A (2009) Prussian Blue electrodeposition within an oriented mesoporous silica film: preliminary observations. J Mater Sci 44:6601–6607

    CAS  Google Scholar 

  81. Cox Ja, Wiaderek KM, Mehdi BL, Gudorf BP, Ranganathan D, Zamponi S, Berrettoni M (2011) Influence of silanization on voltammetry at electrodes modified with silica films of controlled porosity formed by electrochemically initiated sol–gel processing. J Solid State Electrochem 15:2409–2417

    CAS  Google Scholar 

  82. Fattakhova-Rohlfing D, Wark M, Rathouský J (2007) Ion-permselective pH-switchable mesoporous silica thin layers. Chem Mater 19:1640–1647

    CAS  Google Scholar 

  83. Fattakhova Rohlfing D, Wark M, Rathousky J (2007) Electrode layers for electrochemical applications based on functionalized mesoporous silica films. Sens Actuators B 126:78–81

    Google Scholar 

  84. Calvo A, Yameen B, Williams FJ, Azzaroni O, Soler-Illia GJAA (2009) Facile molecular design of hybrid functional assemblies with controllable transport properties: mesoporous films meet polyelectrolyte brushes. Chem. Commun 2553–2555

  85. Brunsen A, Díaz C, Pietrasanta LI, Yameen B, Ceolín M, Soler-Illia GJAA, Azzaroni O (2012) Proton and calcium-gated ionic mesochannels: phosphate-bearing polymer brushes hosted in mesoporous thin films as biomimetic interfacial architectures. Langmuir 28:3583–3592

    Google Scholar 

  86. Etienne M, Grosso D, Boissière C, Sanchez C, Walcarius A (2005) Electrochemical evidences of morphological transformation in ordered mesoporous titanium oxide thin films. Chem Commun 4566–4568

  87. Dunphy DR, Atanassov P, Bunge SD, Chen Z, López GP, Boyle TJ, Brinker CJ (2004) Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Lett 4:551–554

    Google Scholar 

  88. Brunsen A, Cui J, Ceolín M, del Campo A, Soler-Illia GJ a a, Azzaroni O (2012) Light-activated gating and permselectivity in interfacial architectures combining “caged” polymer brushes and mesoporous thin films. Chem Commun 48:1422–1424

    Google Scholar 

  89. Daiguji H, Hwang J, Takahashi A, Kataoka S, Endo A (2012) Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures. Langmuir 28:3671–3677

    CAS  Google Scholar 

  90. Song C, Villemure G (2001) Electrode modification with spin-coated films of mesoporous molecular sieve silicas. Microporous Mesoporous Mater 44–45:679–689

    Google Scholar 

  91. Massari AM, Gurney RW, Schwartz CP, Nguyen ST, Hupp JT (2004) Walljet Electrochemistry: quantifying molecular transport through metallopolymeric and zirconium phosphonate assembled porphyrin square thin films. Langmuir 20:4422–4429

    CAS  Google Scholar 

  92. Guillemin Y, Etienne M, Aubert E, Walcarius A (2010) Electrogeneration of highly methylated mesoporous silica thin films with vertically-aligned mesochannels and electrochemical monitoring of mass transport issues. J Mater Chem 20:6799–6807

    CAS  Google Scholar 

  93. Boissiere C, Grosso D, Lepoutre S, Nicole L, Bruneau AB, Sanchez C (2005) Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 21:12362–12371

    CAS  Google Scholar 

  94. Fontaine O, Laberty-Robert C, Sanchez C (2012) Sol–gel route to zirconia–Pt-nanoelectrode arrays 8 nm in radius: their geometrical impact in mass transport. Langmuir 28:3650–3657

    CAS  Google Scholar 

  95. Rue AE, Collinson MM (2012) Size and shape control of gold nanodeposits in an array of silica nanowells on a gold electrode. Int J Electrochem 2012:1–9

    Google Scholar 

  96. Amatore C, Savéant JM, Tessier D (1983) Charge transfer at partially blocked surfaces. J Electroanal Chem 147:39–51

    CAS  Google Scholar 

  97. Wei T-C, Hillhouse HW (2007) Mass transport and electrode accessibility through periodic self-assembled nanoporous silica thin films. Langmuir 23:5689–5699

    CAS  Google Scholar 

  98. Lefrou C (2007) A very easy kinetics determination for feedback curves with a microdisk SECM tip and rather rapid substrate reaction. J Electroanal Chem 601:94–100

    CAS  Google Scholar 

  99. Cannes C, Kanoufi F, Bard AJ (2002) Cyclic voltammetric and scanning electrochemical microscopic study of menadione permeability through a self-assembled monolayer on a gold electrode. Langmuir 18:8134–8141

    CAS  Google Scholar 

  100. Cornut R, Lefrou C (2008) Studying permeable films with scanning electrochemical microscopy (SECM): Quantitative determination of permeability parameter. J Electroanal Chem 623:197–203

    CAS  Google Scholar 

  101. Williams ME, Hupp JT (2001) Scanning electrochemical microscopy assessment of rates of molecular transport through mesoporous thin films of porphyrinic “molecular squares”. J Phys Chem B 105:8944–8950

    CAS  Google Scholar 

  102. Walcarius A, Mandler D, Cox JA, Collinson M, Lev O (2005) Exciting new directions in the intersection of functionalized sol–gel materials with electrochemistry. J Mater Chem 15:3663

    CAS  Google Scholar 

  103. Walcarius A, Bessière J (1999) Electrochemistry with mesoporous silica: selective mercury(II) binding. Chem Mater 11:3009–3011

    CAS  Google Scholar 

  104. Walcarius A, Despas C, Trens P, Hudson MJ, Bessière J (1998) Voltammetric in situ investigation of an MCM-41-modified carbon paste electrode - a new sensor. J Electroanal Chem 453:249–252

    CAS  Google Scholar 

  105. Sayen S, Etienne M, Bessière J, Walcarius A (2002) Tuning the sensitivity of electrodes modified with an organic–inorganic hybrid by tailoring the structure of the nanocomposite material. Electroanalysis 14:1521–1525

    CAS  Google Scholar 

  106. Walcarius A, Delacote C, Sayen S (2004) Electrochemical probing of mass transfer rates in mesoporous silica-based organic–inorganic hybrids. Electrochim Acta 49:3775–3783

    CAS  Google Scholar 

  107. Yantasee W, Deibler LA, Fryxell GE, Timchalk C, Lin Y (2005) Screen-printed electrodes modified with functionalized mesoporous silica for voltammetric analysis of toxic metal ions. Electrochem Commun 7:1170–1176

    CAS  Google Scholar 

  108. Goubert-Renaudin S, Moreau M, Despas C, Meyer M, Denat F, Lebeau B, Walcarius A (2009) Voltammetric detection of lead(II) using amide-cyclam- functionalized silica-modified carbon paste electrodes. Electroanalysis 21:1731–1742

    CAS  Google Scholar 

  109. Sánchez A, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I, del Hierro I (2010) Development of screen-printed carbon electrodes modified with functionalized mesoporous silica nanoparticles: Application to voltammetric stripping determination of Pb(II) in non-pretreated natural waters. Electrochim Acta 55:6983–6990

    Google Scholar 

  110. Yantasee W, Lin Y, Hongsirikarn K, Fryxell GE, Addleman R, Timchalk C (2007) Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors. Environ Health Perspect 115:1683–1690

    CAS  Google Scholar 

  111. Walcarius A, Mercier L (2010) Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. J Mater Chem 20:4478–4511

    CAS  Google Scholar 

  112. Etienne M, Cortot J, Walcarius A (2007) Preconcentration electroanalysis at surfactant-templated thiol-functionalized silica thin films. Electroanalysis 19:129–138

    CAS  Google Scholar 

  113. Walcarius A, Etienne M, Sayen S, Lebeau B (2003) Grafted silicas in electroanalysis: amorphous versus ordered mesoporous materials. Electroanalysis 15:414–421

    CAS  Google Scholar 

  114. Sanchez A, Walcarius A (2010) Surfactant-templated sol–gel silica thin films bearing 5-mercapto-1-methyl-tetrazole on carbon electrode for Hg(II) detection. Electrochim Acta 55:4201–4207

    CAS  Google Scholar 

  115. Yantasee W, Lin Y, Li X, Fryxell GE, Zemanian TS, Viswanathan VV (2003) Nanoengineered electrochemical sensor based on mesoporous silica thin-film functionalized with thiol-terminated monolayer. Analyst 128:899–904

    CAS  Google Scholar 

  116. Lenz J, Trieu V, Hempelmann R, Kuhn A (2011) Ordered macroporous ruthenium oxide electrodes for potentiometric and amperometric sensing applications. Electroanalysis 23:1186–1192

    CAS  Google Scholar 

  117. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553

    CAS  Google Scholar 

  118. Fähnrich KA, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54:531–559

    Google Scholar 

  119. Hou K, Puzzo D, Helander MG, Lo SS, Bonifacio LD, Wang W, Lu ZH, Scholes GD, Ozin GA (2009) Dye-anchored mesoporous antimony-doped tin oxide electrochemiluminescence cell. Adv Mater 21:2492–2496

    CAS  Google Scholar 

  120. Chen Z, Jiang Y, Dunphy DR, Adams DP, Hodges C, Liu N, Zhang N, Xomeritakis G, Jin X, Aluru NR, Gaik SJ, Hillhouse HW, Brinker CJ (2010) DNA translocation through an array of kinked nanopores. Nature Mater 9:667–675

    CAS  Google Scholar 

  121. Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed 47:8582–8594

    CAS  Google Scholar 

  122. Díaz JF, Balkus KJ (1996) Enzyme immobilization in MCM-41 molecular sieve. J Mol Catal B 2:115–126

    Google Scholar 

  123. Renault C, Balland V, Martinez-Ferrero E, Nicole L, Sanchez C, Limoges B (2009) Highly ordered transparent mesoporous TiO2 thin films: an attractive matrix for efficient immobilization and spectroelectrochemical characterization of cytochrome c. Chem Commun 7494–7496

  124. Frasca S, von Graberg T, J-ju F, Thomas A, Smarsly BM, Weidinger IM, Scheller FW, Hildebrandt P, Wollenberger U (2010) Mesoporous indium tin oxide as a novel platform for bioelectronics. ChemCatChem 2:839–845

    CAS  Google Scholar 

  125. Frasca S, Richter C, von Graberg T, Smarsly BM, Wollenberger U (2011) Electrochemical switchable protein-based optical device. Eng Life Sci 11:554–558

    CAS  Google Scholar 

  126. Kwan P, Schmitt D, Volosin AM, McIntosh CL, Seo D-K, Jones AK (2011) Spectroelectrochemistry of cytochrome c and azurin immobilized in nanoporous antimony-doped tin oxide. Chem Commun 47:12367–12369

    CAS  Google Scholar 

  127. Kuemmel M, Allouche J, Nicole L, Boissière C, Laberty C, Amenitsch H, Sanchez C, Grosso D (2007) A chemical solution deposition route to nanopatterned inorganic material surfaces. Chem Mater 19:3717–3725

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathieu Etienne or Alain Walcarius.

Additional information

Published in the topical collection Characterization of Thin Films and Membranes with guest editors Daniel Mandler and Pankaj Vadgama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etienne, M., Guillemin, Y., Grosso, D. et al. Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films: a review. Anal Bioanal Chem 405, 1497–1512 (2013). https://doi.org/10.1007/s00216-012-6334-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6334-7

Keywords

Navigation