Skip to main content
Log in

Analyzing small samples with high efficiency: capillary batch injection–capillary electrophoresis–mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present an experimental approach to conducting fast capillary electrophoresis–mass spectrometry (CE-MS) measurements of very small samples in the nanoliter range. This is achieved by injecting sample very efficiently into a CE-MS system. Injection efficiency represents the ratio of injected sample to the amount of sample needed for carrying out the injection process (v/v). In order to increase this injection efficiency from typical values of 10–3 to 10−7, the concept of capillary batch injection is used to build an automated, small-footprint injection device for CE-MS. This device is capable of running true multi-sample measurement series, using minimal sample volumes and delivering an injection efficiency of up to 100 %. It is compatible with both aqueous and non-aqueous background electrolytes. As an additional benefit, CE-MS separations of a catecholamine model system in capillaries of 15 cm length under conditions of high electric field strength could be accomplished in 20 s with high separation efficiency. This report details design and specifications of the injection device and shows optimal parameter choices for injections with both high injection efficiency and high separation efficiency. Furthermore, a procedure is presented to coat the tip of a fused silica capillary with a silicone elastomer which acts as a seal between two capillaries.

An approach to transfer nL-samples into the separation capillary of a CE-MS system is presented. The automated and computer-controlled setup can transfer samples with up to 100 % efficiency from the point of sampling into the separation capillary, where highly efficient and fast CE-MS separations are conducted

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BGE:

Background electrolyte

CBI:

Capillary batch injection

CE:

Capillary electrophoresis

ESI:

Electrospray ionization

ID:

Inner diameter

MS:

Mass spectrometry

TOF-MS:

Time-of-flight mass spectrometry

References

  1. Kubáň P, Hauser PC (2011) Electrophoresis 32:30–42, http://dx.doi.org/10.1002/elps.201000354

    Article  Google Scholar 

  2. Pantůčková P, Gebauer P, Boček P, Křivánková L (2011) Electrophoresis 32:43–51, http://dx.doi.org/10.1002/elps.201000382

    Article  Google Scholar 

  3. Ramautar R, Mayboroda OA, Somsen GW, de Jong GJ (2011) Electrophoresis 32:52–65, http://dx.doi.org/10.1002/elps.201000378

    Article  CAS  Google Scholar 

  4. Haselberg R, de Jong GJ, Somsen GW (2011) Electrophoresis 32:66–82, http://dx.doi.org/10.1002/elps.201000364

    Article  CAS  Google Scholar 

  5. Lazar IM, Lee ED, Rockwood AL, Lee ML (1998) J Chromatogr A 829:279–288, http://dx.doi.org/10.1016/S0021-9673(98)00743-2

    Article  CAS  Google Scholar 

  6. Hjerten S, Valtcheva L, Elenbring K, Liao JL (1995) Electrophoresis 16:584 – 594, http://dx.doi.org/10.1002/elps.1150160195

    Article  Google Scholar 

  7. Zhong M, Lunte S (1996) Anal Chem 68:2488 – 2493, http://dx.doi.org/10.1021/ac951238m

    Article  Google Scholar 

  8. Müller O, Minarik M, Foret F (1998) Electrophoresis 19:1436 – 1444, http://dx.doi.org/10.1002/elps.1150190838

    Article  Google Scholar 

  9. Matysik FM (2010) Anal Bioanal Chem 397:961–965, http://dx.doi.org/10.1007/s00216-010-3586-y

    Article  CAS  Google Scholar 

  10. Jankowski JA, Tracht S, Sweedler JV (1995) Trends Anal Chem 14:170–176, http://dx.doi.org/10.1016/0165-9936(95)98315-Y

    CAS  Google Scholar 

  11. Blasco S, Kortz L, Matysik FM (2009) Electrophoresis 30:1–6, http://dx.doi.org/10.1002/elps.200900324

    Article  Google Scholar 

  12. Grundmann M, Matysik FM (2011) Anal Bioanal Chem 400:269–278, http://dx.doi.org/10.1007/s00216-011-4719-7

    Article  CAS  Google Scholar 

  13. Grundmann M, Rothenhöfer M, Bernhardt G, Buschauer A, Matysik FM (2011) Anal Bioanal Chem 402:2617–2623, http://dx.doi.org/10.1007/s00216-011-5254-2

    Article  Google Scholar 

  14. Kennedy RT, Watson CJ, Haskins WE, Powell DH, Strecker RE (2002) Curr Opin Chem Biol 6:659–665, http://dx.doi.org/10.1016/S1367-5931(02)00373-3

    Article  CAS  Google Scholar 

  15. Perry M, Li Q, Kennedy RT (2009) Anal Chim Acta 653:1–22, http://dx.doi.org/10.1016/j.aca.2009.08.038

    Article  CAS  Google Scholar 

  16. Hogan BL, Lunte SM, Stobaugh JF, Lunte CE (1994) Anal Chem 66:596–602, http://dx.doi.org/10.1021/ac00077a004

    Article  CAS  Google Scholar 

  17. Bowser MT, Kennedy RT (2001) Electrophoresis 22:3668–3676, http://dx.doi.org/10.1002/1522-2683(200109)22:17<3668::AID-ELPS3668>3.0.CO;2-M

    Article  CAS  Google Scholar 

  18. Lapainis T, Sweedler JV (2008) J Chromatogr A 1184:144–158, http://dx.doi.org/10.1016/j.chroma.2007.10.098

    Article  CAS  Google Scholar 

  19. Kubáň P, Engström A, Olsson JC, Thorsén G, Tryzell R, Karlberg B (1997) Anal Chim Acta 337:117–124, http://dx.doi.org/10.1016/S0003-2670(96)00339-X

    Article  Google Scholar 

  20. Tůma P, Opekar F, Jelínek I (2000) J Chromatogr A 883:223–230, http://dx.doi.org/10.1016/S0021-9673(00)00446-5

    Article  Google Scholar 

  21. Fang ZL, Liu ZS, Shen Q (1997) Anal Chim Acta 346:135–143, http://dx.doi.org/10.1016/S0003-2670(97)00082-2

    Article  CAS  Google Scholar 

  22. Fang ZL, Fang Q (2001) Fresenius J Anal Chem 370:978–983, http://dx.doi.org/10.1007/s002160100793

    Article  CAS  Google Scholar 

  23. Fu CG, Fang ZL (2000) Anal Chim Acta 422:71–79, http://dx.doi.org/10.1016/S0003-2670(00)01057-6

    Article  CAS  Google Scholar 

  24. Cao XD, Fang Q, Fang ZL (2004) Anal Chim Acta 513:473–479, http://dx.doi.org/10.1016/j.aca.2004.03.028

    Article  CAS  Google Scholar 

  25. Opekar F, Coufal P, Štulík K (2009) Chem Rev 109:4487 – 4499, http://dx.doi.org/10.1021/cr900018r

    Article  Google Scholar 

  26. Matysik FM (2006) Electrochem Commun 8:1011–1015, http://dx.doi.org/10.1016/j.elecom.2006.04.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the glass, mechanical, and electronic workshops at the University of Regensburg for their assistance in implementing the experimental setup. Financial support by the Deutsche Forschungsgemeinschaft (MA 1401/7-1) is gratefully acknowledged. This research was supported by the Research Executive Agency (REA) of the European Union under Grant Agreement number PITN-GA-2010-264772 (ITN CHEBANA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Matysik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4 kb)

(AVI 13,363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grundmann, M., Matysik, FM. Analyzing small samples with high efficiency: capillary batch injection–capillary electrophoresis–mass spectrometry. Anal Bioanal Chem 404, 1713–1721 (2012). https://doi.org/10.1007/s00216-012-6282-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6282-2

Keywords

Navigation