Skip to main content
Log in

In vitro dose–response effects of poly(amidoamine) dendrimers [amino-terminated and surface-modified with N-(2-hydroxydodecyl) groups] and quantitative determination by a liquid chromatography–hybrid quadrupole/time-of-flight mass spectrometry based method

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article presents a dose–response study of the effects of two types of third-generation (G3) and fourth-generation poly(amidoamine) (PAMAM) dendrimers on two cell lines (RTG-2 and H4IIE) by in vitro cytotoxicity assays with 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) assays. We particularly investigated the potential cytotoxic effect of positive surface charge, which a cationic amino-terminated PAMAM dendrimer can display, on the marked ability of PAMAM dendrimers to cross the cell membrane compared with PAMAM dendrimers functionalized with chains of N-(2-hydroxydodecyl). Quantification of dose–response effects was performed by use of mass spectrometry analysis. The analytical method using liquid chromatography–hybrid quadrupole/time-of-flight mass spectrometry that we developed allowed characterization of defective dendrimers instead of “ideal structures.” Identification was based on accurate mass measurement, assignment of elemental composition, and the fully resolved 13 C/12 C isotopic clusters of the multiply charged ions of PAMAM dendrimers. Validation of the liquid chromatography–mass spectrometry method made possible reliable and reproducible quantification of the extracellular and intracellular concentration of dendrimers at a micromolar level (limits of detection from 0.14 to 1.34 μM and from 0.43 to 1.82 μM in standard and culture medium, respectively). A higher cytotoxicity was found with the H4IIE cell line for surface-modified PAMAM dendrimers. The LDH assay was significantly more sensitive than the MTT and NRU assays, with half-maximal inhibitory concentrations (IC50) of 12.96 and 38.31 μg mL-1 for surface-modified G3 and G4 dendrimers, respectively. No cytotoxic effects, in terms of IC50, of amino-terminated PAMAM dendrimers were observed on both H4IIE and RTG-2 cells when the concentration was below 500 μg mL-1 for G3 and G4 dendrimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Project on Emerging Nanotechnologies (2006) Nanotechnology consumer products inventory. http://www.nanotechproject.org/inventories/consumer/. Accessed Apr 2012

  2. Menjoge AR, Kannan RM, Tomalia DA (2010) Drug Discov Today 15:171–185

    Article  CAS  Google Scholar 

  3. Klajnert B, Bryszewska M (2007) Dendrimers in medicine. Nova, New York

    Google Scholar 

  4. Ulaszewska MM, Hernando MD, Uclés A, Rosal R, Rodríguez A, García E, Fernández-Alba AR (2012) In: Barceló D, Farré M (eds) Analysis and risk of nanomaterials in environmental and food samples, 1st edn. Elsevier, Amsterdam

  5. Yellepeddi VK, Kumar A, Palakurthi S (2009) Expert Opin Drug Deliv 6:835–850

    Article  CAS  Google Scholar 

  6. Naha PC, Davoren M, Casey A, Byrne HJ (2009) Environ Sci Technol 43:6864–6869

    Article  CAS  Google Scholar 

  7. Mukherjee SP, Davoren M, Byrne HJ (2010) Toxicol In Vitro 24:169–177

    Article  CAS  Google Scholar 

  8. Giri J, Diallo MS, Goddard WA, Dalleska NF, Fang X, Tang Y (2009) Environ Sci Technol 43:5123–5129

    Article  CAS  Google Scholar 

  9. Mullen DG, Borgmeier EL, Desai AM (2010) Chemistry 16:10675–10678

    Article  CAS  Google Scholar 

  10. Cason CA, Fabré TA, Buhrlage A, Haik KL, Bullen HA (2012) Int J Anal Chem. doi:10.1155/2012/341260

  11. Caminade AM, Laurent R, Majoral JP (2005) Adv Drug Deliv Rev 57:2130–2146

    Article  CAS  Google Scholar 

  12. Giordanengo R, Mazarin M, Wu J, Peng L, Charles L (2007) Int J Mass Spectrom 266:62–75

    Article  CAS  Google Scholar 

  13. Schwartz BL, Rockwood AL, Smith RD, Tomalia DA, Spindler R (1995) Rapid Commun Mass Spectrom 9:1552–1555

    Article  CAS  Google Scholar 

  14. Blasco C, Picó Y (2011) Trends Anal Chem 30:84–99

    Article  CAS  Google Scholar 

  15. Jain K, Kesharwani P, Gupta U, Jain NK (2010) Int J Pharm 394:122–142

    Article  CAS  Google Scholar 

  16. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  17. Borenfreund E, Puerner JA (1985) Toxicol Lett 24:119–124

    Article  CAS  Google Scholar 

  18. Brown DM, Wilson MR, Macnee W, Stone V, Donaldson K (2001) Toxicol Appl Pharmacol 175:191–199

    Article  CAS  Google Scholar 

  19. Segner H (2004) Altern Lab Anim 32:375–382

    CAS  Google Scholar 

  20. Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi X, Balogh L, Orr BG, Baker JR, Banaszak Holl MM (2004) Bioconjug Chem 15:774–782

    Article  CAS  Google Scholar 

  21. Metullio L, Ferrone M, Coslanich A, Fuchs S, Fermeglia M, Paneni MS, Pricl S (2004) Biomacromolecules 5:1371–1378

    Article  CAS  Google Scholar 

  22. Zhou L, Russell DH, Zhao M, Crooks RM (2001) Macromolecules 34:3567–3573

    Article  CAS  Google Scholar 

  23. Kallos GJ, Tomalia DA, Hedstrand DM, Lewis S, Zhou J (1991) Rapid Commun Mass Spectrom 5:383–386

    Article  CAS  Google Scholar 

  24. Hernando MD, Agüera A, Fernández-Alba AR (2007) Anal Bioanal Chem 387:1269–1285

    Article  CAS  Google Scholar 

  25. Janaszewska A, Mączyńska K, Matuszko G, Appelhans D, Voit B, Klajnert B, Bryszewska M (2012) New J Chem 36:428–437

    Article  CAS  Google Scholar 

  26. Parimi S, Barnes TJ, Callen DF, Prestidge CA (2010) Biomacromolecules 11:382–389

    Article  CAS  Google Scholar 

  27. Saovapakhiran A, D’Emanuele A, Attwood D, Penny J (2009) Bioconjug Chem 20:693–701

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Spanish Ministry of Education and Science for financial support through the project “NANOQUAL, Nanoparticles and Water Quality” (National Plan for Scientific Research, Development and Technological Innovation, 2008–2011). M.M.U. acknowledges a research fellowship from the Marie Curie Actions (FP7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Hernando.

Additional information

Published in the topical collection Emerging Contaminants in Biota with guest editors Yolanda Picó and Damià Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernando, M.D., Rosenkranz, P., Ulaszewska, M.M. et al. In vitro dose–response effects of poly(amidoamine) dendrimers [amino-terminated and surface-modified with N-(2-hydroxydodecyl) groups] and quantitative determination by a liquid chromatography–hybrid quadrupole/time-of-flight mass spectrometry based method. Anal Bioanal Chem 404, 2749–2763 (2012). https://doi.org/10.1007/s00216-012-6256-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6256-4

Keywords

Navigation