Skip to main content
Log in

Is nontarget screening of emerging contaminants by LC-HRMS successful? A plea for compound libraries and computer tools

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review focuses on the possibilities and limits of nontarget screening of emerging contaminants, with emphasis on recent applications and developments in data evaluation and compound identification by liquid chromatography–high-resolution mass spectrometry (HRMS). The general workflow includes determination of the elemental composition from accurate mass, a further search for the molecular formula in compound libraries or general chemical databases, and a ranking of the proposed structures using further information, e.g., from mass spectrometry (MS) fragmentation and retention times. The success of nontarget screening is in some way limited to the preselection of relevant compounds from a large data set. Recently developed approaches show that statistical analysis in combination with suspect and nontarget screening are useful methods to preselect relevant compounds. Currently, the unequivocal identification of unknowns still requires information from an authentic standard which has to be measured or is already available in user-defined MS/MS reference databases or libraries containing HRMS spectral information and retention times. In this context, we discuss the advantages and future needs of publicly available MS and MS/MS reference databases and libraries which have mostly been created for the metabolomic field. A big step forward has been achieved with computer-based tools when no MS library or MS database entry is found for a compound. The numerous search results from a large chemical database can be condensed to only a few by in silico fragmentation. This has been demonstrated for selected compounds and metabolites in recent publications. Still, only very few compounds have been identified or tentatively identified in environmental samples by nontarget screening. The availability of comprehensive MS libraries with a focus on environmental contaminants would tremendously improve the situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferrer I, Thurman EM (2003) Trends Anal Chem 22(10):750–756

    Article  CAS  Google Scholar 

  2. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) Environ Pollut 157(2):561–568

    Article  CAS  Google Scholar 

  3. Schultz MM, Furlong ET, Kolpin DW, Werner SL, Schoenfuss HL, Barber LB, Blazer VS, Norris DO, Vajda AM (2010) Environ Sci Technol 44(6):1918–1925

    Article  CAS  Google Scholar 

  4. Valcárcel Y, Alonso SG, Rodríguez-Gil JL, Maroto RR, Gil A, Catalá M (2011) Chemosphere 82(7):1062–1071

    Article  Google Scholar 

  5. Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) J Hydrol 389(3–4):416–428

    Article  CAS  Google Scholar 

  6. Wang C, Shi H, Adams CD, Gamagedara S, Stayton I, Timmons T, Ma Y (2011) Water Res 45(4):1818–1828

    Article  CAS  Google Scholar 

  7. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  8. Ternes TA, Joss A, Siegrist H (2004) Environ Sci Technol 38(20):392A–399A

    Article  CAS  Google Scholar 

  9. Richardson SD, Ternes TA (2011) Anal Chem 83(12):4614–4648

    Article  CAS  Google Scholar 

  10. Richardson SD (2010) Anal Chem 82(12):4742–4774

    Article  CAS  Google Scholar 

  11. Perez S, Eichhorn P, Celiz MD, Aga DS (2006) Anal Chem 78(6):1866–1874

    Article  CAS  Google Scholar 

  12. Escher BI, Fenner K (2011) Environ Sci Technol 45(9):3835–3847

    CAS  Google Scholar 

  13. Kosjek T, Heath E (2008) Trends Anal Chem 27(10):807–820

    Article  CAS  Google Scholar 

  14. Zwiener C (2007) Anal Bioanal Chem 387(4):1159–1162

    Article  CAS  Google Scholar 

  15. Helbling DE, Hollender J, Kohler H-PE, Singer H, Fenner K (2010) Environ Sci Technol 44(17):6621–6627

    Article  CAS  Google Scholar 

  16. Matamoros V, Jover E, Bayona J (2009) Anal Bioanal Chem 393(3):847–860

    Article  CAS  Google Scholar 

  17. von der Ohe PC, Dulio V, Slobotnik J, De Deckere E, Kuehne R, Ebert R-U, Ginebreda A, De Cooman W, Schueuermann G, Brack (2011) Sci Total Environ 409(11):2064–2077

    Google Scholar 

  18. Gros M, Petrovic M, Barcelo D (2006) Anal Bioanal Chem 386(4):941–952

    Article  CAS  Google Scholar 

  19. Zwiener C, Frimmel FH (2004) Anal Bioanal Chem 378(4):851–861

    Article  CAS  Google Scholar 

  20. Zwiener C, Frimmel FH (2004) Anal Bioanal Chem 378(4):862–874

    Article  CAS  Google Scholar 

  21. Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S (2010) J Chromatogr A 1217(44):6791–6806

    Article  CAS  Google Scholar 

  22. Hao C, Zhao X, Tabe S, Yang P (2008) Environ Sci Technol 42(11):4068–4075

    Article  CAS  Google Scholar 

  23. Noedler K, Licha T, Bester K, Sauter M (2010) J Chromatogr A 1217(42):6511–6521

    Article  CAS  Google Scholar 

  24. Lara-Martin PA, Gonzalez-Mazo E, Brownawell BJ (2011) J Chromatogr 1218(30):4799–4807

    Article  CAS  Google Scholar 

  25. Rodil R, Quintana JB, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D (2009) J Chromatogr 1216(14):2958–2969

    Article  CAS  Google Scholar 

  26. Liu FM, Bischoff G, Pestemer W, Xu W, Kofoet A (2006) Chromatographia 63(5–6):233–237

    Article  CAS  Google Scholar 

  27. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Anal Chem 78(7):2113–2120

    Article  CAS  Google Scholar 

  28. Ibáñez M, Sancho JV, Hernández F, McMillan D, Rao R (2008) Trends Anal Chem 27(5):481–489

    Article  Google Scholar 

  29. Gomez MJ, Gomez-Ramos MM, Malato O, Mezcua M, Fernandez-Alba AR (2010) J Chromatogr 1217(45):7038–7054

    Article  CAS  Google Scholar 

  30. Krauss M (2010) Anal Bioanal Chem 397:943–951

    Article  CAS  Google Scholar 

  31. Kind T, Fiehn O (2010) Bioanal Rev 2(1–4):23–60

    Article  Google Scholar 

  32. Marshall AG, Rodgers RP (2008) Proc Natl Acad Sci USA 105(47):18090–18095

    Article  CAS  Google Scholar 

  33. Kim S, Rodgers RP, Marshall AG (2006) Int J Mass Spectrom 251(2–3):260–265

    CAS  Google Scholar 

  34. Want E, Masson P (2011) In: Metz TO (ed) Metabolic profiling. Methods in molecular biology, vol 708. Springer, Berlin, pp 277–298

    Google Scholar 

  35. Schymanski EL, Schulze T, Hermans J, Brack W (2011) In: Brack W (ed) Handbook of environmental chemistry, vol.15. Springer, Berlin, pp 167–198

    Google Scholar 

  36. Neumann S, Böcker S (2010) Anal Bioanal Chem 398(7):2779–2788

    Article  CAS  Google Scholar 

  37. Hernández F, Portolés T, Pitarch E, López FJ (2007) Anal Chem 79(24):9494–9504

    Article  Google Scholar 

  38. García-Reyes JF, Hernando MD, Molina-Díaz A, Fernández-Alba AR (2007) Trends Anal Chem 26(8):828–841

    Article  Google Scholar 

  39. Hogenboom AC, van Leerdam JA, de Voogt P (2009) J Chromatogr A 1216(3):510–519

    Article  CAS  Google Scholar 

  40. Hernández F, Portolés T, Pitarch E, López FJ (2011) Trends Anal Chem 30(2):388–400

    Article  Google Scholar 

  41. Pelander A, Tyrkko E, Ojanpera I (2009) Rapid Commun Mass Spectrom 23(4):506–514

    Article  CAS  Google Scholar 

  42. Wolf S, Schmidt S, Muller-Hannemann M, Neumann S (2010) BMC Bioinform 11(1):148

    Article  Google Scholar 

  43. Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF (2008) Anal Chem 80(14):5574–5582

    Article  CAS  Google Scholar 

  44. Kormos JL, Schulz M, Wagner M, Ternes TA (2009) Anal Chem 81(22):9216–9224

    Article  CAS  Google Scholar 

  45. Kormos JL, Schulz M, Kohler H-PE, Ternes TA (2010) Environ Sci Technol 44(13):4998–5007

    Article  CAS  Google Scholar 

  46. Ibáñez M, Sancho JV, Pozo ÓJ, Niessen W, Hernández F (2005) Rapid Commun Mass Spectrom 19(2):169–178

    Article  Google Scholar 

  47. Bobeldijk I, Vissers JPC, Kearney G, Major H, van Leerdam JA (2001) J Chromatogr A 929(1–2):63–74

    CAS  Google Scholar 

  48. Hao H, Cui N, Wang G, Xiang B, Liang Y, Xu X, Zhang H, Yang J, Zheng C, Wu L, Gong P, Wang W (2008) Anal Chem 80(21):8187–8194

    Article  CAS  Google Scholar 

  49. Meng C-K, Zweigenbaum JA (2010) J AOAC 93(2):703–711

    CAS  Google Scholar 

  50. Bester K, Huehnerfuss H, Lange W, Theobald N (1997) Sci Total Environ 207(2–3):111–118

    Article  CAS  Google Scholar 

  51. Bester K, Theobald N (2000) Water Res 34(8):2277–2282

    Article  CAS  Google Scholar 

  52. Mortishire-Smith RJ, O'Connor D, Castro-Perez JM, Kirby J (2005) Rapid Commun Mass Spectrom 19(18):2659–2670

    Article  CAS  Google Scholar 

  53. Weigel S, Bester K, Huehnerfuss H (2001) J Chromatogr A 912(1):151–161

    Article  CAS  Google Scholar 

  54. Petri M, Jiang JQ, Maier M (2010) Water Sci Technol Water Supply 10(5):806–814

    Article  CAS  Google Scholar 

  55. Grigoriadou A, Schwarzbauer J (2011) Water Air Soil Pollut 214(1):623–643

    Article  CAS  Google Scholar 

  56. Edler B, Zwiener C, Frimmel FH (1997) Fresenius J Anal Chem 359(3):288–292

    Article  CAS  Google Scholar 

  57. Bester K, Huehnerfuss H, Lange W, Rimkus GG, Theobald N (1998) Water Res 32(6):1857–1863

    Article  CAS  Google Scholar 

  58. Zwiener C, Frimmel FH (1998) Fresenius J Anal Chem 360(7–8):820–823

    Article  CAS  Google Scholar 

  59. Gómez MJ, Gómez-Ramos MM, Agueera A, Mezcua M, Herrera S, Fernández-Alba AR (2009) J Chromatogr A 1216(18):4071–4082

    Article  Google Scholar 

  60. Cappiello A, Famiglini G, Palma P, Pierini E, Termopoli V, Trufelli H (2011) Mass Spectrom Rev 30(6):1242–1255

    Article  CAS  Google Scholar 

  61. Cappiello A, Famiglini G, Termopoli V, Trufelli H, Zazzeroni R, Jacquoilleot S, Radici L, Saib O (2011) Anal Chem 83(22):8537–8542

    Article  CAS  Google Scholar 

  62. Mueller A, Schulz W, Ruck WK, Weber WH (2011) Chemosphere 85(8):1211–1219

    Article  CAS  Google Scholar 

  63. Müller A, Schulz W, Weber W (2009) Paper presented at the 75. Jahrestagung der Wasserchemischen Gesellschaft, Stralsund, 18–20 May 2009

  64. Ellis L, Wackett L, Liu Y, Turnbull M (2011) University of Minnesota. http://umbbd.msi.umn.edu/predict/. Accessed Dec 2011

  65. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Environ Sci Technol 43(18):7039–7046

    Article  CAS  Google Scholar 

  66. Hernandez F, Ibanez M, Sancho JV, McMillan D, Rao R (2008) Trends Anal Chem 27(5):481–489

    Article  Google Scholar 

  67. Gomez C, Segura J, Monfort N, Suominen T, Leinonen A, Vahermo M, Yli-Kauhaluoma J, Ventura R (2010) Anal Bioanal Chem 397(7):2903–2916

    Article  CAS  Google Scholar 

  68. Dresen S, Ferreiros N, Gnann H, Zimmermann R, Weinmann W (2010) Anal Bioanal Chem 396(7):2425–2434

    Article  CAS  Google Scholar 

  69. Volna K, Holcapek M, Kolarova L, Lemr K, Caslavsky J, Kacer P, Poustka J, Hubalek M (2008) Rapid Commun Mass Spectrom 22(2):101–108

    Article  CAS  Google Scholar 

  70. Bristow AWT, Webb KS, Lubben AT, Halket J (2004) Rapid Commun Mass Spectrom 18(13):1447–1454

    Article  CAS  Google Scholar 

  71. Hopley C, Bristow T, Lubben A, Simpson A, Bul E, Klagkou K, Herniman J, Langley J (2008) Rapid Commun Mass Spectrom 22(12):1779–1786

    Article  CAS  Google Scholar 

  72. Milman BL (2005) Rapid Commun Mass Spectrom 19(19):2833–2839

    Article  CAS  Google Scholar 

  73. Pavlic M, Schubert B, Libiseller K, Oberacher H (2010) Forensic Sci Int 197(1–3):40–47

    Article  CAS  Google Scholar 

  74. Oberacher H, Pavlic M, Libiseller K, Schubert B, Sulyok M, Schuhmacher R, Csaszar E, Kofeler HC (2009) J Mass Spectrom 44(4):485–493

    Article  CAS  Google Scholar 

  75. Oberacher H, Pavlic M, Libiseller K, Schubert B, Sulyok M, Schuhmacher R, Csaszar E, Kofeler HC (2009) J Mass Spectrom 44(4):494–502

    Google Scholar 

  76. Sana TR, Roark JC, Li X, Waddell K, Fischer SM (2008) J Biomol Tech 19(4):258–266

    Google Scholar 

  77. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) Ther Drug Monit 27(6):747–751

    Article  CAS  Google Scholar 

  78. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) J Mass Spectrom 45(7):703–714

    Article  CAS  Google Scholar 

  79. Network of reference laboratories for monitoring of emerging environmental pollutants (Norman) (2011) http://www.norman-network.net/index_php.php. Accessed Dec 2011

  80. Zweckverband Landeswasserversorgung (2010) http://www.daios-online.de/daios/. Accessed Dec 2011

  81. Sparkman OD (2011) NIST 11: what's new and what value does it offer? Part I. Available via http://www.sepscience.com/mssolutions001

  82. Sparkman OD (2011) NIST 11: what's new and what value does it offer? Part II. Available via http://www.sepscience.com/mssolutions001

  83. Wiley Registry of Mass Spectral Data, 9th Edition (2011). John Wiley & Sons

  84. Hill AW, Mortishire-Smith RJ (2005) Rapid Commun Mass Spectrom 19(21):3111–3118

    Article  CAS  Google Scholar 

  85. National Center for Biotechnology Information (2011) http://pubchem.ncbi.nlm.nih.gov/. Accessed Dec 2011

  86. Kanehisa Laboratories (2011) http://www.genome.jp/kegg/. Accessed Dec 2011

  87. Royal Society of Chemistry (2011) http://www.chemspider.com/. Accessed Dec 2011

  88. Levsen K, Schiebel H-M, Terlouw JK, Jobst KJ, Elend M, Preiß A, Thiele H, Ingendoh A (2007) J Mass Spectrom 42(8):1024–1044

    Article  CAS  Google Scholar 

  89. Jobelius C, Ruth B, Griebler C, Meckenstock RU, Hollender J, Reineke A, Frimmel FH, Zwiener C (2010) Environ Sci Technol 45(2):474–481

    Article  Google Scholar 

  90. Zwiener C, Glauner T, Sturm J, Woerner M, Frimmel FH (2009) Anal Bioanal Chem 395(6):1885–1892

    Article  CAS  Google Scholar 

  91. Schymanski EL, Meringer M, Brack W (2011) Anal Chem 83(3):903–912

    Article  CAS  Google Scholar 

  92. Ulrich N, Schuurmann G, Brack W (2011) J Chromatogr 1218(45):8192–8196

    Article  CAS  Google Scholar 

  93. Schymanski EL, Meinert C, Meringer M, Brack W (2008) Anal Chim Acta 615(2):136–147

    Article  CAS  Google Scholar 

  94. Prasse C, Schluesener MP, Schulz R, Ternes TA (2010) Environ Sci Technol 44(5):1728–1735

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Karina Zedda for reviewing this manuscript and three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Zwiener.

Additional information

Published in the topical collection Analytical Challenges in Environmental and Geosciences with guest editor Christian Zwiener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zedda, M., Zwiener, C. Is nontarget screening of emerging contaminants by LC-HRMS successful? A plea for compound libraries and computer tools. Anal Bioanal Chem 403, 2493–2502 (2012). https://doi.org/10.1007/s00216-012-5893-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5893-y

Keywords

Navigation