Skip to main content
Log in

A design of experiment approach to the sol–gel synthesis of titania monoliths for chromatographic applications

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A design of experiement approach is described for the optimization of the microscopic morphology of macro-mesoporous titania monoliths that were elaborated for the chromatographic enrichment of phosphorylated compounds. The monolithic titania gels were formed via an alkoxy-derived sol–gel route in association with a phase separation mechanism. The synthesis was performed at mild temperatures of gelation using starting mixtures of titanium n-propoxide, hydrochloric acid, N-methylformamide, water, and poly (ethylene oxide). The gelation temperature and the chemical compositions of N-methylformamide, water, and poly (ethylene oxide) were chosen as the most relevant experimental factors of the sol–gel process. Using the sizes of the skeletons and macropores as morphological descriptors of the dried porous monoliths, the statistical analyses simultaneously revealed the effects and interactions between the different factors. Crack-free TiO2 monolithic rods of 8 to 10 cm long with well-defined co-continuous macropores and micro-structured skeletons were obtained after selection of the sol–gel parameters and optimization of the drying and heat-treatment steps of the gels. The bimodal texture of the rods exhibited macropores of 1.5 μm and mesopores centered at 5.2 nm with a total surface area of 140 m2 g−1. The ability of the macro-mesoporous titania rods to selectively bind phosphorylated compounds was demonstrated for O-phosphoamino acids (P-Ser, P-Thr, P-Tyr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kawahara M, Nakamura H, Nakajima T (1990) J Chromatogr 515:149–158

    Article  CAS  Google Scholar 

  2. Tani K, Suzuki Y (1997) Chromatographia 46:623–627

    Article  CAS  Google Scholar 

  3. Tani K, Miyamoto E (1999) J Liquid Chromatogr Relat Technol 22:857–871

    Article  CAS  Google Scholar 

  4. Winkler J, Marme S (2000) J Chromatogr A 888:51–62

    Article  CAS  Google Scholar 

  5. Kimura Y, Shibasaki S, Morisato K, Ishizuka N, Minakuchi H, Nakanishi K, Matsuo M, Amachi T, Ueda M, Ueda K (2004) Anal Biochem 326:262–266

    Article  CAS  Google Scholar 

  6. Nawrocki J, Dunlap C, McCormick A, Carr PW (2004) J Chromatogr A 1028:1–30

    Article  CAS  Google Scholar 

  7. Zhou T, Lucy CA (2008) J Chromatogr A 1187:87–93

    Article  CAS  Google Scholar 

  8. Masatake O, Tani K, Masaki T, Hitoshi K, Nobutoshi K (2009) Chromatographia 70:533–537

    Article  Google Scholar 

  9. Zhou T, Lucy CA (2010) J Chromatogr A 1217:82–88

    Article  CAS  Google Scholar 

  10. Abi Jaoudé M, Randon J (2011) J Chromatogr A 1218:721–725

    Article  Google Scholar 

  11. De Graauw M (2009) Phospho-proteomics, Methods and Protocols. Humana Press, New York

    Book  Google Scholar 

  12. Ishiwata T, Ishijima C, Ohashi A, Okada H, Ohashi K (2007) Anal Sci 23:755–758

    Article  CAS  Google Scholar 

  13. Kittlaus S, Lipinski J, Speer K (2009) J AOAC Int 92:703–714

    CAS  Google Scholar 

  14. Pinkse MWH, Heck AJR (2006) Drug Discov Today Tech 3:331–337

    Article  Google Scholar 

  15. Thingholm TE, Jensen ON, Larsen MR (2009) Proteomics 9:1451–1468

    Article  CAS  Google Scholar 

  16. Dunn JD, Reid GE, Bruening ML (2010) Mass Spectrom Rev 29:29–54

    CAS  Google Scholar 

  17. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Mol Cell Proteomics 4:873–886

    Article  CAS  Google Scholar 

  18. Thingholm TE, Jørgensen TJD, Jensen ON, Larsen MR (2006) Nat Protoc 1:1929–1935

    Article  CAS  Google Scholar 

  19. Ikeguchi Y, Nakamura H (2000) Anal Sci 16:541–543

    Article  CAS  Google Scholar 

  20. Kuroda I, Shintani Y, Motokawa M, Abe S, Furuno M (2004) Anal Sci 20:1313–1319

    Article  CAS  Google Scholar 

  21. Sano A, Nakamura H (2004) Anal Sci 20:565–566

    Article  CAS  Google Scholar 

  22. Sekiguchi Y, Mitsuhashi N, Inoue Y, Yagisawa H, Mimura T (2004) J Chromatogr A 1039:71–76

    Article  CAS  Google Scholar 

  23. Hata K, Morisaka H, Hara K, Mima J, Yumoto N, Tatsu Y, Furuno M, Ishizuka N, Ueda M (2006) Anal Biochem 350:292–297

    Article  CAS  Google Scholar 

  24. Aprilita NH, Huck CW, Bakry R, Feuerstein I, Stecher G, Morandell S, Huang H, Stasyk T, Huber LA, Bonn GK (2005) J Proteome Res 4:2312–2319

    Article  CAS  Google Scholar 

  25. Josic D, Clifton JG (2007) J Chromatogr A 1144:2–13

    Article  CAS  Google Scholar 

  26. Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M, Zou H (2007) Proteomics 7:351–360

    Article  CAS  Google Scholar 

  27. Hou C, Ma J, Tao D, Shan Y, Liang Z, Zhang L, Zhang Y (2010) J Proteome Res 9:4093–4101

    Article  CAS  Google Scholar 

  28. Nakanishi K (1997) J Porous Mater 4:67–112

    Article  CAS  Google Scholar 

  29. Guiochon G (2007) J Chromatogr A 1168:101–168

    Article  CAS  Google Scholar 

  30. Miyazaki S, Morisato K, Ishizuka N, Minakuchi H, Shintani Y, Furuno M, Nakanishi K (2004) J Chromatogr A 1043:19–25

    Article  CAS  Google Scholar 

  31. Miyazaki S, Miah MY, Morisato K, Shintani Y, Kuroha T, Nakanishi K (2005) J Sep Sci 28:39–44

    Article  CAS  Google Scholar 

  32. Randon J, Huguet S, Demesmay C, Berthod A (2010) J Chromatogr A 1217:1496–1500

    Article  CAS  Google Scholar 

  33. Fujita K, Konishi J, Nakanishi K, Hirao K (2004) Appl Phys Lett 85:5595–5597

    Article  CAS  Google Scholar 

  34. Nakanishi K (2006) Bull Chem Soc Jpn 79:673–691

    Article  CAS  Google Scholar 

  35. Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Chem Mater 18:864–866

    Article  CAS  Google Scholar 

  36. Chen Y, Yi Y, Brennan JD, Brook MA (2006) Chem Mater 18:5326–5335

    Article  CAS  Google Scholar 

  37. Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Chem Mater 18:6069–6074

    Article  CAS  Google Scholar 

  38. Backlund S, Smått JH, Rosenholm JB, Lindén M (2007) J Disper Sci Technol 28:115–119

    Article  CAS  Google Scholar 

  39. Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki S, Ohira M (2009) J Chromatogr A 1216:7375–7383

    Article  CAS  Google Scholar 

  40. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) J Sol-Gel Sci Techno 153:59–66

    Article  Google Scholar 

  41. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) J Am Ceram Soc 93:3110–3115

    Article  CAS  Google Scholar 

  42. Zhao J, Jiang ZT, Tan J, Li R (2011) J Sol-Gel Sci Technol 58:436–441

    Article  CAS  Google Scholar 

  43. Abi Jaoudé M, Randon J (2011) Anal Bioanal Chem 400:1241–1249

    Article  Google Scholar 

  44. Wang C, Ying JY (1999) Chem Mater 11:3113–3120

    Article  CAS  Google Scholar 

  45. Kjellander R, Florin E (1981) J Chem Soc Faraday Trans 1(77):2053–2077

    Google Scholar 

  46. Dormidontova EE (2002) Macromolecules 35:987–1001

    Article  CAS  Google Scholar 

  47. Lee Penn R, Banfield JF (1999) Geochim Cosmochim Ac 63:1549–1557

    Article  Google Scholar 

  48. Scherer GW (1988) J Non-Cryst Solids 100:77–92

    Article  CAS  Google Scholar 

  49. Scherer GW (1990) J Am Ceram Soc 73:3–14

    Article  CAS  Google Scholar 

  50. Gaweł B, Gaweł K, Øye G (2010) Materials 3:2815–2833

    Article  Google Scholar 

  51. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) J Phys Chem B 107:13871–13879

    Article  CAS  Google Scholar 

  52. Farneth WE, Kim KS, Barteau MA (1988) Langmuir 4:533–543

    Article  Google Scholar 

  53. Kim JG, Tai WP, Lee KJ, Cho WS (2004) Ceram Int 30:2223–2227

    Article  CAS  Google Scholar 

  54. Jaroniec CP, Jaroniec M, Kruk M (1998) J Chromatogr A 797:93–102

    Article  CAS  Google Scholar 

  55. Connor PA, McQuillan AJ (1999) Langmuir 15:2916–2921

    Article  CAS  Google Scholar 

  56. Brodard-Severac F, Guerrero G, Maquet J, Florian P, Gervais C, Mutin PH (2008) Chem Mater 20:5191–5196

    Article  CAS  Google Scholar 

  57. Rob van Veen JA, Veltmaat FTG, Jonkers GJ (1985) Chem Soc, Chem Commun 1656–1658

  58. Sickmann A, Meyer HE (2000) Proteomics 1:200–206

    Article  Google Scholar 

  59. Krebs EG, Beavo JA (1979) Annu Rev Biochem 48:923–959

    Article  CAS  Google Scholar 

  60. Krebs EG (1983) Philos Trans Roy Soc B 302:3–11

    Article  CAS  Google Scholar 

  61. Hunter T (2000) Cell 100:113–127

    Article  CAS  Google Scholar 

  62. Kosik KS, Shimura H (2005) Biochim Biophys Acta 1739:298–310

    CAS  Google Scholar 

  63. Yamashita H, Nevalainen MT, Xu J, Le Baron MJ, Wagner K, Erwin RA, Harmon JM, Hennighausen L, Kirken RA, Rui H (2001) Mol Cell Endocrinol 183:151–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Randon.

Additional information

Published in the special issue Euroanalysis XVI (The European Conference on Analytical Chemistry) with guest editor Slavica Ražić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abi Jaoudé, M., Randon, J., Bordes, C. et al. A design of experiment approach to the sol–gel synthesis of titania monoliths for chromatographic applications. Anal Bioanal Chem 403, 1145–1155 (2012). https://doi.org/10.1007/s00216-012-5761-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5761-9

Keywords

Navigation