Skip to main content

Advertisement

Log in

Surface-attached sensors for cation and anion recognition

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of surface-attached sensors for cationic and anionic guests is of intense current research interest. In addition to the environmental flexibility, robustness and reusability of such devices, surface-confined sensors typically exhibit an amplified response to target analytes owing to preorganization of the receptor. Whereas redox-active cations may be sensed by studying the cyclic voltammetry of host–guest systems containing ion-selective receptors attached to an appropriate electrode, redox-inactive ionic species require the use of electrochemical impedance spectroscopy, with appropriately functionalized electrodes and redox probes. Alternatively, receptors may be constructed that incorporate an electrochemical or optical reporter group within their structure to provide a macroscopic response to the presence of an ionic guest. This critical review seeks to present an up-to-date, although necessarily selective, account of the progress in the field, and provides insights into possible future developments, including the utilization of receptor–nanoparticle conjugates and mechanically interlocked receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EIS:

electrochemical impedance spectroscopy

Fc/Fc+ :

ferrocene/ferrocenium

Ppfc/Ppfc+ :

pentaphenylferrocene/pentaphenylferrocenium

R ct :

charge-transfer resistance

SAMs:

self-assembled monolayers

TTF:

tetrathiafulvalene

References

  1. Fraústo da Silva JJR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  2. Clarkson TW, Magos L, Myers GJ (2003) New Engl J Med 349:1731–1737

    Article  CAS  Google Scholar 

  3. Rowe SM, Miller S, Sorscher EJ (2005) New Engl J Med 352:1992–2001

    Article  CAS  Google Scholar 

  4. Moss B (1996) Chem Ind 407–411

  5. Yoshihara, K (1996) Top Curr Chem (1996) 176:17–35

  6. Fabbrizzi L, Poggi A (1995) Chem Soc Rev 24:197–202

    Article  CAS  Google Scholar 

  7. Zheng S, Cardona S, Echegoyen L (2005) Chem Commun 4461–4473

  8. Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481–4483

    Article  CAS  Google Scholar 

  9. Sagiv J (1980) J Am Chem Soc 102:92–98

    Article  CAS  Google Scholar 

  10. Allara DL, Nuzzo RG (1985) Langmuir 1:45–52

    Article  CAS  Google Scholar 

  11. Rubinstein I, Steinberg S, Tor Y, Shanzer A, Sagiv J (1988) Nature 332:426–429

    Article  CAS  Google Scholar 

  12. Steinberg S, Tor Y, Sabatini E, Rubinstein I (1991) J Am Chem Soc 113:5176–5182

    Article  CAS  Google Scholar 

  13. Turyan I, Mandler D (1994) Anal Chem 66:58–63

    Article  CAS  Google Scholar 

  14. Nagaoka T, Chen ZD, Okuno H, Nakayama M, Ogura K (1999) Anal Sci 15:857–862

    Article  CAS  Google Scholar 

  15. Liu A-C, Chen D-C, Lin C-C, Chou H-H, Chen C-H (1999) Anal Chem 71:1549–1552

    Article  CAS  Google Scholar 

  16. Yang W-R, Jaramillo D, Gooding JJ, Hibbert, DB, Zhang R, Willet GD, Fisher K (2001) Chem Commun 1982–1983

  17. Becker A, Tobias H, Porat Z, Mandler D (2008) J Electroanal Chem 621:214–221

    Article  CAS  Google Scholar 

  18. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  19. Flink S, Boukamp BA, van der Berg A, Van Veggel FCJM, Reinhoudt DN (1998) J Am Chem Soc 120:4652–4657

    Article  CAS  Google Scholar 

  20. Bandyopadhyay K, Liu H, Liu S-G, Echegoyen L (2000) Chem Commun 141–142

  21. Bandyopadhyay K, Liu S-G, Liu H, Echegoyen L (2000) Chem Eur J 6:4385–4392

    Article  CAS  Google Scholar 

  22. Colonna B, Echegoyen L (2001) Chem Commun 1104–1105

  23. Bandyopadhyay K, Shu L, Liu H, Echegoyen L (2000) Langmuir 16:2706–2716

    Article  CAS  Google Scholar 

  24. Zhang S, Echegoyen L (2003) Tetrahedron Lett 44:9079–9082

    Article  CAS  Google Scholar 

  25. Zhang S, Echegoyen L (2004) Org Lett 6:791–794

    Article  CAS  Google Scholar 

  26. Shervedani RK, Bagherzadeh M (2009) Sens Actuators B 139:657–664

    Article  Google Scholar 

  27. Zhang S, Echegoyen L (2005) J Am Chem Soc 127:2006–2011

    Article  CAS  Google Scholar 

  28. Zhang S, Palkar A, Echegoyen L (2006) Langmuir 22:10732–10738

    Article  CAS  Google Scholar 

  29. Zhi F, Lu X, Yang J, Wang X, Shang H, Zhang S, Xue Z (2009) J Phys Chem 113:13166–13172

    CAS  Google Scholar 

  30. Moore AJ, Goldenberg LM, Bryce MR, Petty MC, Monkman AP, Marenco C, Yarwood J, Joyce MJ, Port SN (1998) Adv Mater 10:395–398

    Article  CAS  Google Scholar 

  31. Liu H, Liu S, Echegoyen L (1999) Chem Commun 1493–1494

  32. Trippé G, Oçafrain M, Besbes M, Monroche V, Lyskawa J, Le Derf F, Sallé M, Becher J, Colonna B, Echegoyen L (2002) New J Chem 26:1320–1323

    Article  Google Scholar 

  33. Lyskawa J, Oçafrain M, Trippé G, Le Derf F, Sallé M, Viel P, Palacin S (2006) Tetrahedron 62:4419–4425

    Article  CAS  Google Scholar 

  34. Jensen LG, Nielsen KA, Breton T, Sessler JL, Jeppesen JO, Levillain E, Sanguinet L (2009) Chem Eur J 15:8128–8133

    Article  CAS  Google Scholar 

  35. Chung TD, Park J, Kim J, Lim H, Choi M-J, Kim RJ, Chang S-K, Kim H (2001) Anal Chem 73:3975–3980

    Article  CAS  Google Scholar 

  36. Bayly SR, Beer PD, Chen GZ (2008) In: Stepnicka P (ed) Ferrocenes: ligands, materials and biomolecules. Wiley, Chichester

    Google Scholar 

  37. Alonso E, Lanade A, Raehm L, Kern J-M, Astruc D (1999) C R Acad Sci Ser IIc Chim 2:209–213

    CAS  Google Scholar 

  38. Beer PD, Davis JJ, Drillsma-Milgrom DA, Szemes F (2002) Chem Commun 1716–1717

  39. Cormode DP, Evans AJ, Davis JJ, Beer PD (2010) Dalton Trans 39:6532–6541

    Article  CAS  Google Scholar 

  40. Gobi KV, Ohsaka T (2000) J Electroanal Chem 485:61–70

    Article  CAS  Google Scholar 

  41. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI (2002) Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  42. Imahori H, Norieda H, Nishimura Y, Yamazaki I, Higuchi K, Kato N, Motohiro T, Yamada H, Tamaki K, Arimura M, Sakata Y (2000) J Phys Chem B 104:1253–1260

    Article  CAS  Google Scholar 

  43. van der Veen NJ, Flink S, Deji MA, Egberrink RJM, Van Veggel FCJM, Reinhoudt DN (2000) J Am Chem Soc 122:6112–6113

    Article  Google Scholar 

  44. Basabe-Desmonts L, Beld J, Zimmerman RS, Hernando J, Mela P (2004) García Parajo MF, van Hulst NF, van den Berg A, Reinhoudt DN, Crego-Calama M. J Am Chem Soc 126:7293–7299

    Article  CAS  Google Scholar 

  45. Lupo F, Gentile S, Ballistreri FP, Tomaselli GA, Fragalà ME, Gulino A (2010) Analyst 135:2273–2279

    Article  CAS  Google Scholar 

  46. Ju H, Lee MH, Kim J, Kim JS, Kim J (2011) Talanta 83:1359–1363

    Article  CAS  Google Scholar 

  47. Lupo F, Capici C, Gattuso G, Notti A, Parisi MF, Pappalardo A, Pappalardo S, Gulino A (2010) Chem Mater 22:2829–2834

    Article  CAS  Google Scholar 

  48. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  49. Kim E, Seo S, Seo ML, Jung JH (2010) Analyst 135:149–156

    Article  CAS  Google Scholar 

  50. Labande A, Ruiz J, Astruc D (2002) J Am Chem Soc 124:1782–1789

    Article  CAS  Google Scholar 

  51. Daniel M-C, Ruiz J, Nalte S, Blais J-C, Astruc D (2003) J Am Chem Soc 125:2617–2618

    Article  CAS  Google Scholar 

  52. Beer PD, Cormode DP, Davis JJ (2004) Chem Commun 414–415

  53. Massue J, Quinn SJ, Gunnlaugsson T (2008) J Am Chem Soc 130:6900–6901

    Article  CAS  Google Scholar 

  54. Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  55. Lankshear MD, Beer PD (2006) Coord Chem Rev 250:3142–3160

    Article  CAS  Google Scholar 

  56. Wisner JA, Beer PD, Drew MGB, Sambrook MR (2002) J Am Chem Soc 124:12469–12476

    Article  CAS  Google Scholar 

  57. Sambrook MR, Beer PD, Wisner JA, Paul RL, Cowley AR (2004) J Am Chem Soc 126:15364–15365

    Article  CAS  Google Scholar 

  58. Davis JJ, Orlowski GA, Rahman H, Beer PD (2010) Chem Commun 46:54–63

    Article  CAS  Google Scholar 

  59. Chmielewski MJ, Davis JJ, Beer PD (2009) Org Biomol Chem 7:415–424

    Article  CAS  Google Scholar 

  60. Bayly SR, Gray TM, Chmielewski MJ, Davis JJ, Beer PD (2007) Chem Commun 2234–2236

  61. Zhao L, Mullen KM, Chmielewski MJ, Brown A, Bampos N, Beer PD, Davis JJ (2009) New J Chem 33:760–768

    Article  CAS  Google Scholar 

  62. Zhao L, Davis JJ, Mullen KM, Chmielewski MJ, Jacobs RMJ, Brown A, Beer PD (2009) Langmuir 25:2935–2940

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding of studentships for N.H.E. and H.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason J. Davis or Paul D. Beer.

Additional information

Published in the special issue Surface Architectures for Analytical Purposes with guest editors Luigia Sabbatini and Luisa Torsi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, N.H., Rahman, H., Davis, J.J. et al. Surface-attached sensors for cation and anion recognition. Anal Bioanal Chem 402, 1739–1748 (2012). https://doi.org/10.1007/s00216-011-5403-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5403-7

Keywords

Navigation