Skip to main content
Log in

Combined non-destructive XRF and SR-XAS study of archaeological artefacts

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report on a non-destructive study of Sicilian ceramic fragments of cultural heritage interest, classified as “proto-majolica” pottery and dating back to the twelfth to thirteen centuries AD. The analytical approach used is based on the employment of two totally non-invasive spectroscopic techniques: X-ray fluorescence (XRF), using a portable energy-dispersive XRF analyser, and X-ray absorption spectroscopy, using synchrotron radiation as a probe (SR-XAS). XRF measurements allowed us to collect elemental and spatially resolved information on major and minor constituents of the decorated coating of archaeological pottery fragments, so providing preliminary results on the main components characterizing the surface. In particular, we assigned to Fe and Mn the role of key elements of the colouring agent. With the aim of obtaining more detailed information, we performed SR-XAS measurements at the Fe and Mn K-edges at the Italian BM08 beamline at the European Synchrotron Radiation Facility (Grenoble, France). The experimental data were analysed by applying principal component analysis and least-squares fitting to the near-edge part of the spectra (X-ray absorption near-edge structure) to determine the samples’ speciation. From the overall results, umber, a class of brownish pigments characterized by a mixture of hydrated iron and manganese oxides, has been ascribed as a pigmenting agent.

Fe K-edge XANES spectra of selected proto-majolica samples and reference compounds (FeO, Fe3O4, Fe2O3, Fe+SiO2). D pigmented, L not pigmented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aceto M, Agostino A, Boccaleri E, Cerutti Garlanda A (2008) XRay Spectrom 37:286–292

    Article  CAS  Google Scholar 

  2. De Waal D (2009) J Raman Spectrosc 40:2162–2170

    Article  Google Scholar 

  3. Appolonia L, Vaudan D, Chatel V, Aceto M, Mirti P (2009) Anal Bioanal Chem 395:2005–2013

    Article  CAS  Google Scholar 

  4. Bacci M, Magrini D, Picollo M, Vervat M (2009) J Cult Herit 10:275–280

    Article  Google Scholar 

  5. Hocquet FP, Garnir HP, Marchal A, Clar M, Oger C, Strivay D (2008) XRay Spectrom 37:304–308

    Article  CAS  Google Scholar 

  6. Roldàn C, Murcia-Mascarós S, Ferrero J, Villaverde V, Lòpez E, Domingo I, Martínez R, Guillem PM (2010) XRay Spectrom 39:243–250

    Article  Google Scholar 

  7. Parras-Guijarro D, Montejo-Gámez M, Ramos-Martos N, Sánchez A (2006) Spectrochim Acta A 64:1133–1141

    Article  CAS  Google Scholar 

  8. Brostoff LB, Centeno SA, Ropret P, Bythrow P, Pottier F (2009) Anal Chem 81:6096–6106

    Article  CAS  Google Scholar 

  9. Van der Snickt G, Janssens K, Schalm O, Aibéo C, Kloustc H, Alfelda M (2010) XRay Spectrom 39:103–111

    Article  Google Scholar 

  10. Barilaro D, Barone G, Crupi V, Majolino D, Mazzoleni P, Tigano G, Venuti V (2008) Vib Spectrosc 48:269–275

    Article  CAS  Google Scholar 

  11. Barilaro D, Crupi V, Majolino D, Venuti V, Barone G, Tigano G, Imberbi S, Kockelmann W (2008) J Phys Condens Matter 20:104254

    Article  Google Scholar 

  12. Reher JJ, Albers RC (2000) Rev Mod Phys 72:621–654

    Article  Google Scholar 

  13. Denecke MA (2006) Coord Chem Rev 250:730–754

    Article  CAS  Google Scholar 

  14. Lau D, Kappen P, Strohschnieder M, Brack N, Pigram PJ (2008) Spectrochim Acta B 63:1283–1289

    Article  Google Scholar 

  15. Tite MS, Freestone I, Mason R, Molera J, Vendrell-Saz M, Wood N (1998) Archaeometry 40:241–260

    Article  CAS  Google Scholar 

  16. Padeletti G, Fermo P, Gilardoni S (2002) Mater Issues Art Archaeol VI 712:383–389

    Google Scholar 

  17. Ressler T, Wong J, Roos J, Smith IL (2000) Environ Sci Technol 34:950–958

    Article  CAS  Google Scholar 

  18. Newville M (2001) J Synchrotron Rad 8:322–324

    Article  CAS  Google Scholar 

  19. Meneghini C, Bardelli F (2009) Scientific software developed by C. Meneghini. http://webusers.fis.uniroma3.it/~meneghini/software.html

  20. James F, Winkler M (2004) Minuit. http://www.cern.ch/minuit

  21. Wilke M, Farges F, Petit PE, Brown GE Jr, Martin F (2001) Am Miner 86:714–730

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica grant MURST-PRIN2007. The authors are grateful to ESRF (Grenoble, France) for providing beam time and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Longo.

Additional information

Published in the special issue Analytical Chemistry for Cultural Heritage with Guest Editors Rocco Mazzeo, Silvia Prati, and Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardelli, F., Barone, G., Crupi, V. et al. Combined non-destructive XRF and SR-XAS study of archaeological artefacts. Anal Bioanal Chem 399, 3147–3153 (2011). https://doi.org/10.1007/s00216-011-4718-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4718-8

Keywords

Navigation