Skip to main content
Log in

Transformations of polycyclic musks AHTN and HHCB upon disinfection with hypochlorite: two new chlorinated disinfection by-products (CDBP) of AHTN and a possible source for HHCB-lactone

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the behavior of the polycyclic musks 6-acetyl-1,1,2,4,4,7-hexamethyltetraline (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran (HHCB) was investigated upon disinfection by using sodium hypochlorite as disinfectant in a model disinfection basin in order to find new disinfection by-products (DBP). In the case of AHTN, the carboxylic acid 3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid (AHTN-COOH) was generated by a haloform reaction, being the origin for two new chlorinated DBPs. In the case of HHCB, disinfection via hypochlorite led to the HHCB-lactone. All reaction products and intermediates were synthesized and isolated. The relevant degradation mechanisms are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rowe DJ (2005) Chemistry and technology of flavors and fragrances. Wiley-Blackwell, Oxford. doi:10.1002/ange.200285283

    Google Scholar 

  2. Roosens L, Covaci A, Neels H (2007) Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere 69(10):1540–1547

    Article  CAS  Google Scholar 

  3. Rimkus GG (1999) Polycyclic musk fragrances in the aquatic environment. Toxicol Lett 111(1–2):37–56

    Article  CAS  Google Scholar 

  4. Kupper T, Berset JD, Etter-Holzer R, Furrer R, Tarradellas J (2004) Concentration and specific loads of polycyclic musks in sewage sludge originating from a monitoring network in Switzerland. Chemosphere 54(8):1111–1120

    Article  CAS  Google Scholar 

  5. Heberer T (2003) Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta Hydrochim Hydrobiol 30(5–6):227–243

    CAS  Google Scholar 

  6. Fromme H, Otto T, Pilz K (2001) Polycyclic musk fragrances in different environmental compartments in Berlin (Germany). Water Res 35(1):121–128

    Article  CAS  Google Scholar 

  7. Rimkus GG, Wolf M (1996) Polycyclic musk fragrances in human adipose tissue and human milk. Chemosphere 33(10):2033–2043

    Article  CAS  Google Scholar 

  8. Guo R, Lee IS, Kim UJ, Oh JE (2010) Occurrence of synthetic musks in Korean sewage sludges. Sci Total Environ 408(7):1634–1639

    Article  CAS  Google Scholar 

  9. Reiner JL, Berset JD, Kannan K (2007) Mass flow of polycyclic musks in two wastewater treatment plants. Arch Environ Contam Toxicol 52(4):451–457

    Article  CAS  Google Scholar 

  10. Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo JC, Cela R (2008) Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190(1–2):27–38

    Article  CAS  Google Scholar 

  11. Bitsch N, Dudas C, Korner W, Failing K, Biselli S, Rimkus G, Brunn H (2002) Estrogenic activity of musk fragrances detected by the E-screen assay using human MCF-7 cells. Arch Environ Contam Toxicol 43(3):257–264

    Article  CAS  Google Scholar 

  12. Yamauchi R, Ishibashi H, Hirano M, Mori T, Kim JW, Arizono K (2008) Effects of synthetic polycyclic musks on estrogen receptor, vitellogenin, pregnane X receptor, and cytochrome P450 3A gene expression in the livers of male medaka (Oryzias latipes). Aquat Toxicol 90(4):261–268

    Article  CAS  Google Scholar 

  13. WHO (2006) Guidelines for drinking-water quality incorporating 1st and 2nd addenda. 1 (3rd ed.). WHO

    Google Scholar 

  14. Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. TrAC, Trends Anal Chem 22(10):666–684

    Article  CAS  Google Scholar 

  15. Rook JJ (1974) Formation of haloforms during chlorination of natural waters. Wat Treat Exam 23(Pt. 2):234–243

    Google Scholar 

  16. Yamamoto DN (2004) Mutagenicity of chlorination products of benzophenone and its derivatives. J Environ Chem 14(2):335–342

    CAS  Google Scholar 

  17. Taher B, Schleusener A, Baltes W (1994) Reaction of the Uv-a-absorber oxybenzone with water containing chlorine. Dtsch Lebensm Rundsch 90(2):35–38

    CAS  Google Scholar 

  18. Gallard H, Leclercq A, Croue JP (2004) Chlorination of bisphenol a: kinetics and by-products formation. Chemosphere 56(5):465–473

    Article  CAS  Google Scholar 

  19. Kuhlich P, Goestl R, Metzinger R, Piechotta C, Nehls I (2010) 3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetrahydro-2-naphthoic acid (AHTN–COOH). Acta Crystallogr E66:o2687

    CAS  Google Scholar 

  20. Dewkar GK, Narina SV, Sudalai A (2003) NalO4-mediated selective oxidative halogenation of alkenes and aromatics using alkali metal halides. Org Lett 5(23):4501–4504

    Article  CAS  Google Scholar 

  21. Fuson RC, Bull BA (1934) The haloform reaction. Chem Rev 15(3):275–309

    Article  CAS  Google Scholar 

  22. Kochi JK (1965) Formation of alkyl halides from acids by decarboxylation with lead(IV) acetate and halide salts. J Org Chem 30:3265

    Article  CAS  Google Scholar 

  23. Valdersnes S, Kallenborn R, Sydnes LK (2006) Identification of several Tonalide(R) transformation products in the environment. Int J Environ Anal Chem 86(7):461–471

    Article  CAS  Google Scholar 

  24. Bovonsombat P, McNelis E (1993) Ring halogenations of polyalkylbenzenes with N-halosuccinimide and acidic catalysts. Synthesis 1993(2):237–241

    Article  Google Scholar 

  25. Franke S, Meyer C, Heinzel N, Gatermann R, Huhnerfuss H, Rimkus G, Konig WA, Francke W (1999) Enantiomeric composition of the polycyclic musks HHCB and AHTN in different aquatic species. Chirality 11(10):795–801

    Article  CAS  Google Scholar 

  26. Kajigaeshi S, Nakagawa T, Nagasaki N, Yamasaki H, Fujisaki S (1986) Oxidation of alcohols and ethers using sodium-bromate hydrobromic acid system. Bull Chem Soc Jpn 59(3):747–750

    Article  CAS  Google Scholar 

  27. Bressan M, Morvillo A (1989) Selective oxidation of alkanes and ethers mediated by ruthenium (II) complexes. J Chem Soc Chem Commun 7:421–423

    Article  Google Scholar 

  28. Gonsalvi L, Arends IWCE, Sheldon RA (2002) Highly efficient use of NaOCl in the Ru-catalysed oxidation of aliphatic ethers to esters. Chem Commun (Cambridge UK) 3:202–203

    Article  Google Scholar 

  29. Metsger L, Bittner S (2000) Autocatalytic oxidation of ethers with sodium bromate. Tetrahedron 56(13):1905–1910

    Article  CAS  Google Scholar 

  30. Martin C, Moeder M, Daniel X, Krauss G, Schlosser D (2007) Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments. Environ Sci Technol 41(15):5395–5402

    Article  CAS  Google Scholar 

  31. Bester K (2004) Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant. Chemosphere 57(8):863–870

    Article  CAS  Google Scholar 

  32. Horii Y, Reiner JL, Loganathan BG, Kumar KS, Sajwan K, Kannan K (2007) Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA. Chemosphere 68(11):2011–2020

    Article  CAS  Google Scholar 

  33. Hunsdiecker H, Hunsdiecker C (1942) Concerning the breakdown aliphatic acid salts by bromine. Berichte Der Deutschen Chemischen Gesellschaft 75:291–297

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Dr. Mügge and Ms. Thiesies (Humboldt University, Berlin, Department of Chemistry) for measuring NMR samples. David Siegel, Stefan Merkel, Sebastian Schmidt, and Robert Rothe (Federal Institute for Materials Research and Testing, Berlin, Germany) are thanked for valuable discussion and technical support. Dr. Franziska Emmerling and Werner Kraus (Federal Institute for Materials Research and Testing, Berlin, Germany) are acknowledged for measuring and obtaining X-ray crystal structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kuhlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlich, P., Göstl, R., Teichert, P. et al. Transformations of polycyclic musks AHTN and HHCB upon disinfection with hypochlorite: two new chlorinated disinfection by-products (CDBP) of AHTN and a possible source for HHCB-lactone. Anal Bioanal Chem 399, 3579–3588 (2011). https://doi.org/10.1007/s00216-011-4674-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4674-3

Keywords

Navigation