Skip to main content
Log in

Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although laser desorption mass spectrometry was introduced in the 1960s, the potential of laser mass spectrometry was not realised until the introduction of matrix-assisted laser desorption/ionisation (MALDI) in the 1980s. The technique relies on light-absorbing compounds called matrices that are co-crystallised with the analyte to achieve high ionisation and desorption efficiencies. MALDI offers a lot of advantages and is an indispensable tool in macromolecule analysis. However, the presence of the matrix also produces a high chemical background in the region below m/z 700 in the mass spectrum. Surface-assisted laser desorption/ionisation (SALDI) substitutes the chemical matrix of MALDI for an active surface, which means that matrix interference can be eliminated. SALDI mass spectrometry has evolved in recent years into a technique with great potential to provide insight into many of the challenges faced in modern research, including the growing interest in “omics” and the demands of pharmaceutical science. A great variety of materials have been reported to work in SALDI. Examples include a number of nanomaterials and surfaces. The unique properties of nanomaterials greatly facilitate analyte desorption and ionisation. This article reviews recent advances made in relation to carbon- and semiconductor-based SALDI strategies. Examples of their environmental, chemical and biomedical applications are discussed with the aim of highlighting progression in the field and the robustness of the technique, as well as to evaluate the strengths and weaknesses of individual approaches. In addition, this article describes the physical and chemical processes involved in SALDI and explains how the unique physical and electronic properties of nanostructured surfaces allow them to substitute for the matrix in energy transfer processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sunner J, Dratz E, Chen Y-C (1995) Anal Chem 67:4335–4342

    CAS  Google Scholar 

  2. Han M, Sunner J (2000) J Am Soc Mass Spectrom 11:644–649

    Google Scholar 

  3. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Rapid Commun Mass Spectrom 2:151–153

    CAS  Google Scholar 

  4. Zhang Q, Zou H, Guo Z, Zhang Q, Chen X, Ni J (2001) Rapid Commun Mass Spectrom 15:217–223

    CAS  Google Scholar 

  5. Hoang TT, Chen Y, May SW, Browner RF (2004) Anal Chem 76:2062–2070

    CAS  Google Scholar 

  6. Peterson DS (2007) Mass Spectrom Rev 26:19–34

    CAS  Google Scholar 

  7. Pan C, Xu S, Zhou H, Fu Y, Ye M, Zou H (2007) Anal Bioanal Chem 387:193–204

    CAS  Google Scholar 

  8. Cohen L, Go EP, Siuzdak G (2007) Small-molecule desorption/ionization mass analysis. In: Hillenkamp F, Peter-Katalinić J (eds) MALDI MS: a practical guide to instrumentation, methods and applications, 1st edn. Wiley-VCH, Weinheim

  9. Law KP (2010) Int J Mass Spectrom 290:47–59

    Google Scholar 

  10. Law KP (2010) Int J Mass Spectrom 290:72–84

    Google Scholar 

  11. Kang M-J, Pyun J-C, Lee J-C, Choi Y-J, Park J-H, Park J-G, Lee J-G, Choi H-J (2005) Rapid Commun Mass Spectrom 19:3166–3170

    CAS  Google Scholar 

  12. Daniels RH, Dikler S, Li E, Stacey C (2008) J Assn Lab Automation 13:314–321

    CAS  Google Scholar 

  13. IUPAC (2004) Project: Standard definitions of terms relating to mass spectrometry. http://www.iupac.org/web/ins/2003-056-2-500. Accessed 23 April 2010

  14. Guo Z, Ganawi A, Liu Q, He L (2006) Anal Bioanal Chem 384:584–592

    CAS  Google Scholar 

  15. Iijima S (1991) Nature 354:56–58

    CAS  Google Scholar 

  16. Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) Proc Natl Acad Sci USA 106:6044–6047

    CAS  Google Scholar 

  17. Shin SJ, Choi D-W, Kwak H-S, Lim GI, Choi YS (2006) Bull Korean Chem Soc 27:581–583

    CAS  Google Scholar 

  18. Dattelbaum AM, Iyer S (2006) Expert Rev Proteomics 3:153–161

    CAS  Google Scholar 

  19. Najam-ul-Haq M, Rainer M, Szabó Z, Vallant R, Huck CW, Bonn GK (2007) J Biochem Biophys Methods 70:319–328

    CAS  Google Scholar 

  20. Xu S, Li Y, Zou H, Qiu J, Guo Z, Guo B (2003) Anal Chem 75:6191–6195

    CAS  Google Scholar 

  21. Pan C, Xu S, Zou H, Guo Z, Zhang Y, Guo B (2004) J Am Soc Mass Spectrom 16:263–270

    Google Scholar 

  22. S-f Ren L, Zhang Z-h Cheng, Guo Y-l (2005) J Am Soc Mass Spectrom 16:333–339

    Google Scholar 

  23. Ren S-f, Guo Y-l (2005) Rapid Commun Mass Spectrom 19:255–260

    CAS  Google Scholar 

  24. Pan C, Xu S, Hu L, Su X, Ou J, Zou H, Guo Z, Zhang Y, Guo B (2005) J Am Soc Mass Spectrom 16:883–892

    CAS  Google Scholar 

  25. Chen W-Y, Wang L-S, Chiu H-T, Chen Y-C, Lee C-Y (2004) J Am Soc Mass Spectrom 15:1629–1635

    CAS  Google Scholar 

  26. Tang H-W, Ng K-M, Lu W, Che C-M (2009) Anal Chem 81:4720–4729

    CAS  Google Scholar 

  27. Alimpiev S, Nikiforov S, Karavanskii V, Minton T, Sunner J (2001) J Chem Phys 115:1891–1901

    CAS  Google Scholar 

  28. Shariatgorji M, Amini N, Thorsen G, Crescenzi C, Ilag LL (2008) Anal Chem 80:5515–5523

    CAS  Google Scholar 

  29. Amini N, Shariatgorji M, Thorsén G (2009) J Am Soc Mass Spectrom 20:1207–1213

    CAS  Google Scholar 

  30. Amini N, Shariatgorji M, Crescenzi C, Thorsén G (2010) Anal Chem 82:290–296

    CAS  Google Scholar 

  31. Ugarov MV, Egan T, Khabashesku DV, Schultz JA, Peng H, Khabashesku VN, Furutani H, Prather KS, Wang HWJ, Jackson SN, Woods AS (2004) Anal Chem 76:6734–6742

    CAS  Google Scholar 

  32. Wei J, Buriak J, Siuzdak G (1999) Nature 399:243–246

    CAS  Google Scholar 

  33. Lewis W, Shen Z, Finn MG, Siuzdak G (2003) Int J Mass Spectrom 226:107–116

    Google Scholar 

  34. Nordstrom A, He L, Siuzdak G (2007) Desorption/ionization on silicon (DIOS). In: Gross ML, Caprioli RM (eds) The encyclopedia of mass spectrometry volume 6: molecular ionization methods, 1st edn. Elsevier, Amsterdam

  35. Shen Z, Thomas JJ, Averbuj C, Broo KM, Engelhard M, Crowell JE, Finn MG, Siuzdak G (2001) Anal Chem 73:612–619

    CAS  Google Scholar 

  36. Stewart MP, Buriak JM (2000) Adv Mater 12:859–869

    CAS  Google Scholar 

  37. Schmeltzer JM, Buriak JM (2004) Recent developments in the chemistry and chemical applications of porous silicon. In: Rao CNR, Müller A, Cheetham AK (eds) The chemistry of nanomaterials: synthesis, properties and applications, vol 2. Wiley-VCH, Weinheim

  38. Canham LT (1990) Appl Phys Lett 57:1046–1048

    CAS  Google Scholar 

  39. Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Nature 449:1033–1036

    CAS  Google Scholar 

  40. Kalkan AK, Bae S, Li H, Hayes DJ, Fonash SJ (2000) J Appl Phys 88:555–561

    Google Scholar 

  41. Kalkan AK, Henry MR, Li H, Cuiffi JD, Hayes DJ, Palmer C, Fonash SJ (2005) Nanotechnology 16:1383–1391

    CAS  Google Scholar 

  42. Seino T, Sato H, Yamamoto A, Nemoto A, Torimura M, Tao H (2007) Anal Chem 79:4827–4832

    Google Scholar 

  43. Sato H, Nemoto A, Yamamoto A, Tao H (2009) Rapid Commun Mass Spectrom 23:603–610

    CAS  Google Scholar 

  44. Finkel NH, Prevo BG, Velev OD, He L (2005) Anal Chem 77:1088–1095

    CAS  Google Scholar 

  45. Xiao Y, Retterer ST, Thomas DK, Tao J-Y, He L (2009) J Phys Chem C 113:3076–3083

    CAS  Google Scholar 

  46. Go EP, Apon JV, Luo G, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Anal Chem 77:1641–1646

    CAS  Google Scholar 

  47. Luo G, Chen Y, Daniels H, Dubrow R, Vertes A (2006) J Phys Chem B 110:13381–13386

    CAS  Google Scholar 

  48. Coffinier Y, Janel S, Addad A, Blossey R, Gengembre L, Payen E, Boukherroub R (2007) Langmuir 23:1608–1611

    CAS  Google Scholar 

  49. Hayes DJ (2004) Micrototal analysis system for enzymatic drug metabolism and analysis (Ph.D. thesis). Department of Engineering Science and Mechanics, Pennsylvania State University, University Park

  50. Okuno S, Arakawa R, Okamoto K, Matsui Y, Seki S, Kozawa T, Tagawa S, Wada Y (2005) Anal Chem 77:5364–5369

    CAS  Google Scholar 

  51. Shin JH, Song JY, Park HM (2009) Mater Lett 63:145–147

    CAS  Google Scholar 

  52. Shin WJ, Shin JH, Song JY, Han SY (2010) J Am Soc Mass Spectrom 21:989–92

    Google Scholar 

  53. Chen Y, Vertes A (2006) Anal Chem 78:5835–5844

    CAS  Google Scholar 

  54. Chen Y, Luo G, Diao J, Chornoguz O, Reeves M, Vertes A (2007) J Phys Conf Ser 59:548–554

    Google Scholar 

  55. Sainiemi L, Keskinen H, Aromaa M, Luosujärvi L, Grigoras K, Kotiaho T, Mäkelä JM, Franssila S (2007) Nanotechnology 18:505303–505310

    Google Scholar 

  56. Jokinen V, Aura S, Luosujärvi L, Sainiemi L, Kotiaho T, Franssila S, Baumann M (2009) J Am Soc Mass Spectrom 20:1723–1730

    CAS  Google Scholar 

  57. Wen X, Dagan S, Wysocki VH (2007) Anal Chem 79:434–444

    CAS  Google Scholar 

  58. Dagan S, Hua Y, Boday DJ, Somogyi A, Wysocki RJ, Wysocki VH (2009) Int J Mass Spectrom 283:200–205

    Google Scholar 

  59. Watanabe T, Kawasaki H, Yonezawa T, Arakawa R (2008) J Mass Spectrom 43:1063–1071

    CAS  Google Scholar 

  60. Dattelbaum AM, Hicks RK, Shelley J, Koppisch AT, Iyer S (2008) Micropor Mesopor Mat 114:193–200

    CAS  Google Scholar 

  61. Shariatgorji M, Amini N, Ilag L (2009) J Nanopart Res 11:1509–1512

    CAS  Google Scholar 

  62. Li J, Lu C, Hu XK, Yang X, Loboda AV, Lipson RH (2009) Int J Mass Spectrom 285:137–142

    Google Scholar 

  63. Gl Piret, Drobecq H, Coffinier Y, Melnyk O, Boukherroub R (2010) Langmuir 26:1354–1361

    Google Scholar 

  64. Shenar N, Cantel S, Martinez J, Enjalbal C (2009) Rapid Commun Mass Spectrom 23:2371–2379

    CAS  Google Scholar 

  65. Guénin E, Lecouvey M, Hardouin J (2009) Rapid Commun Mass Spectrom 23:1395–1400

    Google Scholar 

  66. Li X, Bohn PW (2000) Appl Phys Lett 77:2572–2574

    CAS  Google Scholar 

  67. Kruse RA, Li X, Bohn PW, Sweedler JV (2001) Anal Chem 73:3639–3645

    CAS  Google Scholar 

  68. Li Q, Ricardo A, Benner SA, Winefordner JD, Powell DH (2005) Anal Chem 77:4503–4508

    Google Scholar 

  69. Tsao C-W, Kumar P, Liu J, DeVoe DL (2008) Anal Chem 80:2973–2981

    CAS  Google Scholar 

  70. Skipp P, Farooqui M, Pickard K, Li Y, Evans AGR, O’Connor CD (2004) Expanding the information window to increase proteomic sensitivity and selectivity. In: Valdes JJ, Sekowski JW (eds) Proceedings of NATO Advanced Workshop on Proteomics and Toxicogenomics. IOS Press, Amsterdam

  71. Li Q (2005) Exploring desorption/ionization on porous silicon mass spectrometry and its applications (Ph.D. thesis). Department of Chemistry, University of Florida, Gainesville

  72. Tsao C-W (2008) Interfacing microfluidic bioanalysis with high sensitivity mass spectrometry (Ph.D. dissertation). Department of Mechanical Engineering, University of Maryland, College Park

  73. Piret G, Coffinier Y, Roux C, Melnyk O, Boukherroub R (2008) Langmuir 24:1670–1672

    CAS  Google Scholar 

  74. Alimpiev S, Grechnikov A, Sunner J, Karavanskii V, Simanovsky Y, Zhabin S, Nikiforov S (2008) J Chem Phys 128:014711–014719

    CAS  Google Scholar 

  75. Hanley L, Kornienko O, Ada ET, Fuoco E, Trevor JL (1999) J Mass Spectrom 34:705–723

    CAS  Google Scholar 

  76. Zhu X (1994) Annu Rev Phys Chem 45:113–144

    CAS  Google Scholar 

  77. Knochenmuss R (2002) J Mass Spectrom 37:867–877

    CAS  Google Scholar 

  78. Knochenmuss R (2006) Analyst 131:966–986

    CAS  Google Scholar 

  79. Kolasinski K (2002) Surface science: foundations of catalysis and nanoscience. Wiley, Chichester

  80. Stewart MP, Buriak JM (2001) J Am Chem Soc 123:7821–7830

    CAS  Google Scholar 

  81. Budimir N, Fournier F, Blais J-C, Wind F, Tabet J-C (2003) Study of fatty acids and sulfonic acids by desorption/ionization on silicon mass spectrometry. In: 51st Annu Conf ASMS, Montreal, Canada, 8–12 June 2003

  82. Okuno S, Arakawa R, Wada Y (2004) J Mass Spectrom Soc Jpn 52:13–20

    CAS  Google Scholar 

  83. Okuno S, Nakano M, G-e Matsubayashi, Arakawa R, Wada Y (2004) Rapid Commun Mass Spectrom 18:2811–2817

    CAS  Google Scholar 

  84. Budimir N, Blais J-C, Fournier F, Tabet J-C (2007) J Mass Spectrom 42:42–48

    CAS  Google Scholar 

  85. Umezu I, Kohno K, Aoki K, Kohama Y, Sugimura A, Inada M (2002) Vacuum 66:453–456

    CAS  Google Scholar 

  86. Nayak R, Knapp DR (2007) Anal Chem 79:4950–4956

    CAS  Google Scholar 

  87. Xu D, Guo G, Gui L, Tang Y, Zhang B, Qin G (1998) Electrochem Solid-State Lett 1:227–229

    CAS  Google Scholar 

  88. Xu D, Guo G, Gui L, Tang Y, Zhang BR, Qin GG (1999) J Phys Chem B 103:5468–5471

    CAS  Google Scholar 

  89. Xu D, Guo G, Gui L, Tang Y, Qin GG (2000) Pure Appl Chem 72:237–243

    CAS  Google Scholar 

  90. Cullis AG, Canham LT, Calcott PDJ (1997) J Appl Phys 82:909–965

    CAS  Google Scholar 

  91. Palaria A, Klimeck G, Strachan A (2008) Electronic structure and transport in silicon nano-structures with non-ideal bonding environments. TECHCON, Austin

  92. Maus M, Ganteför G, Eberhardt W (2000) Appl Phys A 70:535–539

    CAS  Google Scholar 

  93. Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Opt Express 6:213–219

    CAS  Google Scholar 

  94. Northen TR, Woo HK, Northen MT, Nordström A, Uritboonthail W, Turner KL, Siuzdak G (2007) J Am Soc Mass Spectrom 18:1945–1949

    CAS  Google Scholar 

  95. Wada Y, Yanagishita T, Masuda H (2007) Anal Chem 79:9122–9127

    CAS  Google Scholar 

  96. Luo G, Chen Y, Siuzdak G, Vertes A (2005) J Phys Chem B 109:24450

    CAS  Google Scholar 

  97. Nordstrom A, Apon JV, Uritboonthai W, Go EP, Siuzdak G (2006) Anal Chem 78:272–278

    Google Scholar 

  98. Vertes A (2007) Soft laser desorption ionization—MALDI, DIOS and nanostructures. In: Phipps CR (ed) Laser ablation and its applications. Springer, New York

  99. Gloria R, Lichtenberg J, Hierlemann A, Poulikakos D (2005) Micro platform for investigation of explosive vaporization in micro enclosures. In: 9th Int Conf on Miniaturized Systems for Chemistry and Life Sciences (μTAS), Boston, MA, USA, 9–13 Oct 2005

  100. Huwe A, Kremer F, Behrens P, Schwieger W (1999) Phys Rev Lett 82:2338–2341

    CAS  Google Scholar 

  101. Bellissent-Funel M-C, Lal J, Bosio L (1993) J Chem Phys 98:4246–4252

    CAS  Google Scholar 

  102. Bellissent-Funel M-C, Chen SH, Zanotti J-M (1995) Phys Rev E 51:4558–4569

    CAS  Google Scholar 

  103. Guégan R, Morineau D, Loverdo C, Béziel W (2006) Phys Rev E 73:011707

    Google Scholar 

  104. Chen Y, Chen H, Aleksandrov A, Orlando TM (2008) J Phys Chem C 112:6953–6960

    CAS  Google Scholar 

  105. King AK, Bellm SM, Hammond CJ, Reid KL, Towrie M, Matousek P (2005) Mol Phys 103:1821–1827

    CAS  Google Scholar 

  106. Budimir N, Lesage D, Naban-Maillet J, Fournier F, Blais J-C, Wind F, Vékey K, Tabet J-C (2004) Internal energy of ions produced by desorption/ionisation on porous silicon (DIOS). 52nd Annu Conf ASMS, Nashville, TN, USA, 24–27 May 2004

  107. Rosenstock HM, Wallenstein MB, Wahrhaftig AL, Eyring H (1952) Proc Natl Acad Sci USA 38:667–678

    CAS  Google Scholar 

  108. Go EP, Uritboonthai W, Apon JV, Trauger SA, Nordstrom A, O’Maille G, Brittain SM, Peters EC, Siuzdak G (2007) J Proteome Res 6:1492–1499

    CAS  Google Scholar 

  109. Trauger SA, Go EP, Shen Z, Apon JV, Compton BJ, Bouvier ESP, Finn MG, Siuzdak G (2004) Anal Chem 76:4484–4489

    CAS  Google Scholar 

  110. Thomas JJ, Blackledge RD, Siuzdak G (2001) Anal Chim Acta 442:183–190

    CAS  Google Scholar 

  111. Shen ZX, Thomas JJ, Siuzdak G, Blackledge RD (2004) J Forensic Sci 49:1028–1035

    CAS  Google Scholar 

  112. Pihlainen K, Grigoras K, Franssila S, Ketola R, Kotiaho T, Kostiainen R (2005) J Mass Spectrom 40:539–545

    CAS  Google Scholar 

  113. Kraj A, Świst M, Strugala A, Parczewski A, Silberringa J (2006) Eur J Mass Spectrom 12:253–259

    CAS  Google Scholar 

  114. Kraj A, Jarzebinska J, Gorecka-Drzazga A, Dziuban J, Silberring J (2006) Rapid Commun Mass Spectrom 20:1969–1972

    CAS  Google Scholar 

  115. Bergquist J, Silberring J (1998) Rapid Commun Mass Spectrom 12:683–688

    CAS  Google Scholar 

  116. Okuno S, Wada Y (2005) J Mass Spectrom 40:1000–1004

    CAS  Google Scholar 

  117. Finkel NH (2005) Surface-assisted laser desorption/ionization-mass spectrometry (SALDI-MS) of controlled nanofeatures and the associated thermal properties (MSci thesis). Department of Chemistry, North Carolina State University, Raleigh

  118. Laiko VV, Taranenko NI, Berkout VD, Musselman BD, Doroshenko VM (2002) Rapid Commun Mass Spectrom 16:1737–1742

    CAS  Google Scholar 

  119. Thomas JJ, Shen Z, Crowell JE, Finn MG, Siuzdak G (2001) Proc Natl Acad Sci USA 98:4932–4937

    Google Scholar 

  120. Go EP, Prenni JE, Wei J, Jones A, Hall SC, Witkowska HE, Shen Z, Siuzdak G (2003) Anal Chem 75:2504–2506

    CAS  Google Scholar 

  121. Kinumi T, Shimomae Y, Arakawa R, Tatsu Y, Shigeri Y, Yumoto N, Niki E (2006) J Mass Spectrom 41:103–112

    CAS  Google Scholar 

  122. Go EP, Wikoff WR, Shen Z, O'Maille G, Morita H, Conrads TP, Nordstrom A, Trauger SA, Uritboonthai W, Lucas DA, Chan KC, Veenstra TD, Lewicki H, Oldstone MB, Schneemann A, Siuzdak G (2006) J Proteome Res 5:2405–2416

    CAS  Google Scholar 

  123. Liesener A, Karst U (2005) Anal Bioanal Chem 382:1451–1464

    CAS  Google Scholar 

  124. Shen Z, Go EP, Gamez A, Apon JV, Fokin V, Greig M, Ventura M, Crowell JE, Blixt O, Paulson JC, Stevens R, Finn MG, Siuzdak G (2004) ChemBioChem 5:921–927

    CAS  Google Scholar 

  125. Wall DB, Finch JW, Cohen SA (2004) Rapid Commun Mass Spectrom 18:1482–1486

    CAS  Google Scholar 

  126. Steenwyk RC, Hutzler JM, Sams J, Shen Z, Siuzdak G (2006) Rapid Commun Mass Spectrom 20:3717–3722

    CAS  Google Scholar 

  127. Northen TR, Lee J-C, Hoang L, Raymond J, Hwang D-R, Yannone SM, Wong C-H, Siuzdak G (2008) Proc Natl Acad Sci USA 105:3678–3683

    CAS  Google Scholar 

  128. Nichols KP, Azoz S, Gardeniers HJGE (2008) Anal Chem 80:8314–8319

    CAS  Google Scholar 

  129. Zou H, Zhang Q, Guo Z, Guo B, Zhang Q, Chen X (2002) Angew Chem Int Ed 41:646–648

    CAS  Google Scholar 

  130. Hu L, Xu S, Pan C, Zou H, Jiang G (2007) Rapid Commun Mass Spectrom 21:1277–1281

    CAS  Google Scholar 

  131. Xu S, Pan C, Hu L, Zhang Y, Guo Z, Li X, Zou H (2004) Electrophoresis 25:3669–3676

    CAS  Google Scholar 

  132. Hollis JM, Lovas FJ, Jewell PR (2000) Astrophys J 540:L107–L110

    CAS  Google Scholar 

  133. Burke DJ, Brown WA (2010) Phys Chem Chem Phys 12:5947–5969

    CAS  Google Scholar 

  134. Vaidyanathan S, Jones DG, Ellis J, Jenkins TE, Dunn W, Hayes A, Burton N, Oliver S, Kell DB, Goodacre R (2005) Metabolomics 1:1–8

    Google Scholar 

  135. Allen J, Davey H, Broadhurst D, Heald J, Rowland J, Oliver S, Kell D (2003) Nat Biotechnol 21:692–696

    CAS  Google Scholar 

  136. Amantonico A, Flamigni L, Glaus R, Zenobi R (2009) Metabolomics 5:346–353

    CAS  Google Scholar 

  137. Gómez D, Fernández JA, Astigarraga E, Marcaide A, Azcárate S (2007) Phys State Solidi (c) 4:2185–2189

    Google Scholar 

  138. Miura D, Fujimura Y, Tachibana H, Wariishi H (2010) Anal Chem 82:498–504

    CAS  Google Scholar 

  139. Liu Q, Guo Z, He L (2007) Anal Chem 79:3535–3541

    CAS  Google Scholar 

  140. Liu Q, Xiao Y, Pagan-Miranda C, Chiu YM, He L (2009) J Am Soc Mass Spectrom 20:80–88

    CAS  Google Scholar 

  141. Liu Q, He L (2009) J Am Soc Mass Spectrom 20:2229–2237

    CAS  Google Scholar 

  142. Yanes O, Woo H-K, Northen TR, Oppenheimer SR, Shriver L, Apon J, Estrada MN, Potchoiba MJ, Steenwyk R, Manchester M, Siuzdak G (2009) Anal Chem 81:2969–2975

    CAS  Google Scholar 

  143. Patti GJ, Woo H-K, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon JV, Steenwyk R, Manchester M, Siuzdak G (2010) Anal Chem 82:121–128

    CAS  Google Scholar 

  144. Ifa DR, Wiseman JM, Song Q, Cooks RG (2007) Int J Mass Spectrom 259:8–15

    Google Scholar 

  145. Debois D, Brunelle A, Laprévote O (2007) Int J Mass Spectrom 260:115–120

    Google Scholar 

  146. Kawasaki H, Takahashi N, Fujimori H, Okumura K, Watanabe T, Matsumura C, Takemine S, Nakano T, Arakawa R (2009) Rapid Commun Mass Spectrom 23:3323–3332

    CAS  Google Scholar 

  147. Kawasaki H, Shimomae Y, Watanabe T, Arakawa R (2009) Colloid Surf A 347:220–224

    CAS  Google Scholar 

  148. Nguyen MT (2007) General and theoretical aspects of anilines. In: Rappoport Z (ed) The Chemistry of Anilines, Part 1 John Wiley & Sons, Chichester, West Sussex, UK

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Law.

Additional information

Published in the special issue on Advances in Analytical Mass Spectrometry with Guest Editor Maria Careri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, K.P., Larkin, J.R. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem 399, 2597–2622 (2011). https://doi.org/10.1007/s00216-010-4063-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4063-3

Keywords

Navigation