Skip to main content
Log in

Synchrotron microangiography studies of angiogenesis in mice with microemulsions and gold nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present an effective solution for the problem of contrast enhancement in phase-contrast microangiography, with the specific objective of visualising small (<8 µm) vessels in tumor-related microangiogenesis. Different hydrophilic and hydrophobic contrast agents were explored in this context. We found that an emulsified version of the hydrophobic contrast agents Lipiodol® provides the best contrast and minimal distortion of the circulation and vessel structure. Such emulsions are reasonably biocompatible and, with sizes of 0 ± 0.8 µm, sufficient to diffuse to the smallest vessel and still provide reasonable contrast. We also explored the use of Au nanoparticle colloids that could be used not only to enhance contrast but also for interesting applications in nanomedicine. Both the Lipiodol microemulsions and Au nanoparticle colloids can be conjugated with medicines or cell specific labeling agents and their small size can allow the study of the diffusion of contrast agents through the vessel leakage. This enables direct imaging of drug delivery which is important for cancer treatment.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hwu Y, Hsieh HH, Lu MJ, Tsai WL, Lin HM, Goh WC, Lai B, Je JH, Kim CK, Noh DY, Youn HS, Tromba G, Margaritondo G (1999) Coherence-enhanced synchrotron radiology, refraction vs. diffraction mechanisms. J Appl Phys 86:4613–4618

    Article  CAS  Google Scholar 

  2. Khurana R, Simons M, Martin JF, Zachary IC (2005) Role of angiogenesis in cardiovascular disease—a critical appraisal. Circulation 112:1813–1824

    Article  Google Scholar 

  3. Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H, Rau WS, Seeger W, Grimminger F, Banat GA (2009) Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia 11(1):48–56

    CAS  Google Scholar 

  4. Hwu Y, Tsai WL, Je JH, Seol SK, Kim B, Groso A, Margaritondo G, Lee KH, Seong JK (2004) Synchrotron microangiography with no contrast agent. Phys Med Biol 49:501–508

    Article  CAS  Google Scholar 

  5. Tokiya R, Umetani K, Imai S, Yamashita T, Hiratsuka J, Imajo Y (2004) Observation of microvasculatures in athymic nude rat transplanted tumor using synchrotron radiation microangiography system. Acad Radiol 11:1039–1046

    Article  Google Scholar 

  6. Schwenke DO, Pearson JT, Umetani K, Kangawa K, Shirai M (2007) Imaging of the pulmonary circulation in the closed-chest rat using synchrotron radiation microangiography. J Appl Physiol 102:787–793

    Article  Google Scholar 

  7. Morishita A, Kondoh T, Sakurai T, Ikeda M, Bhattacharjee AK, Nakajima S, Kohmura E, Yokono K, Umetani K (2006) Quantification of distension in rat cerebral perforating arteries. NeuroReport 17:1549–1553

    Article  Google Scholar 

  8. Imazuru T, Matsushita S, Hyodo K, Tokunaga C, Kanemoto S, Enomoto Y, Watanabe Y, Hiramatsu Y, Sakakibara Y (2009) Erythropoietin enhances arterioles more significantly than it does capillaries in an infarcted rat heart model. Int Heart J 50:801–810

    Article  CAS  Google Scholar 

  9. Schwenke DO, Pearson JT, Kangawa K, Umetani K, Shirai M (2008) Changes in macrovessel pulmonary blood flow distribution following chronic hypoxia: assessed using synchrotron radiation microangiography. J Appl Physiol 104:88–96

    Article  Google Scholar 

  10. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  Google Scholar 

  11. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    CAS  Google Scholar 

  12. McDonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 62:5381–5385

    CAS  Google Scholar 

  13. Bolan PJ, Yacoub E, Garwood M, Ugurbil K, Harel N (2006) In vivo micro-MRI of intracortical neurovasculature. Neuroimage 32:62–69

    Article  Google Scholar 

  14. Cuenod CA, Fournier L, Balvay D, Guinebretiere JM (2006) Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31:188–193

    Article  CAS  Google Scholar 

  15. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  CAS  Google Scholar 

  16. Ogura O, Takebayashi Y, Sameshima T, Maeda S, Yamada K, Hata K, Akiba S, Aikour T (2001) Preoperative assessment of vascularity by color Doppler ultrasonography in human rectal carcinoma. Dis Colon Rectum 44:538–546

    Article  CAS  Google Scholar 

  17. Park KS, Choi BI, Won HJ, Seo JB, Kim SH, Kim TK, Han JK, Yeon KM (1998) Intratumoral vascularity of experimentally induced VX2 carcinoma: comparison of color Doppler sonography, power Doppler sonography, and microangiography. Invest Radiol 33(1):39–44

    Article  CAS  Google Scholar 

  18. Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann KJ (2005) Applications of optical coherence tomography in dermatology. Dermatol Sci 40(2):85–94

    Article  Google Scholar 

  19. An L, Wang RK (2008) In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express 16(15):11438–11452

    Article  Google Scholar 

  20. Lee TY, Purdie TG, Stewart EQ (2003) CT imaging of angiogenesis. J Nucl Med 47:171–187

    Google Scholar 

  21. Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2:11–18

    Article  CAS  Google Scholar 

  22. Goh V, Padhani AR, Rasheed S (2007) Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 8:245–255

    Article  Google Scholar 

  23. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  CAS  Google Scholar 

  24. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122

    Article  CAS  Google Scholar 

  25. Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276

    Article  CAS  Google Scholar 

  26. Mulder WJ, Castermans K, van Beijnum JR, Oude Egbrink MG, Chin PT, Fayad ZA, Löwik CW, Kaijzel EL, Que I, Storm G, Strijkers GJ, Griffioen AW, Nicolay K (2009) Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 12:17–24

    Article  CAS  Google Scholar 

  27. Walls JR, Coultas L, Rossant J, Henkelman RM (2008) Three-dimensional analysis of vascular development in the mouse embryo. PLoS ONE 3:e2853

    Article  Google Scholar 

  28. Fukumura D, Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS 116:695–715

    Article  CAS  Google Scholar 

  29. Petibois C, Piccinini M, Cestelli-Guidi M, Déléris G, Marcelli A (2009) A bright future for synchrotron imaging. Nat Photonics 3:179

    Article  CAS  Google Scholar 

  30. Belbachir K, Noreen R, Gouspillou G, Petibois C (2009) Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem 385:829–837

    Article  Google Scholar 

  31. Wehbe K, Pinneau R, Moenner M, Déléris G, Petibois C (2008) FT-IR spectral imaging of protein content changes in blood vessels during tumor growth. Anal Bioanal Chem 392:129–135

    Article  CAS  Google Scholar 

  32. Yeh CK, Chen JJ, Li ML, Luh JJ, Chen JJ (2009) In vivo imaging of blood flow in the mouse Achilles tendon using high-frequency ultrasound. Ultrasonics 49:226–230

    Article  Google Scholar 

  33. Parzya E, Miraux S, Franconi J, Thiaudière E (2009) In vivo quantification of blood velocity in mouse carotid and pulmonary arteries by ECG-triggered 3D time-resolved magnetic resonance angiography. NMR Biomed. doi:10.1002/nbm.1365

    Google Scholar 

  34. Margaritondo G, Hwu Y, Je JH (2004) Synchrotron light in medical and materials science radiology. La Rivista del Nuovo Cimento 27(7):1–40

    Google Scholar 

  35. Hwu Y, Tsai WL, Chang HM, Yeh HI, Hsu PC, Yang YC, Su YT, Tsai HL, Chow GM, Ho PC, Li SC, Moser HO, Yang P, Seol SK, Kim CC, Je JH, Stefanekova E, Groso A, Margaritondo G (2004) Imaging cells in tissues with refractive index radiology. Biophys J 87:4180–4187

    Article  CAS  Google Scholar 

  36. Tamaki M, Kidoguchi K, Mizobe T, Koyama J, Kondoh T, Sakurai T, Kohmura E, Yokono K, Umetani K (2006) Carotid artery occlusion and collateral circulation in C57Black/6 J mice detected by synchrotron radiation microangiography. Kobe J Med Sci 52:111–118

    Google Scholar 

  37. Myojin K, Taguchi A, Umetani K, Fukushima K, Nishiura N, Matsuyama T, Kimura H, Stern DM, Imai Y, Mori H (2007) Visualization of intracerebral arteries by synchrotron radiation microangiography. Am J Neuroradiol 28:953–957

    CAS  Google Scholar 

  38. Akishima S, Matsushita S, Sato F, Hyodo K, Imazuru T, Enomoto Y, Noma M, Hiramatsu Y, Shigeta O, Sakakibara Y (2007) Cigarette-smoke-induced vasoconstriction of peripheral arteries: evaluation by synchrotron radiation microangiography. Circ J 71:418–422

    Article  Google Scholar 

  39. Kuwabara E, Furuyama F, Ito K, Tanaka E, Hattan N, Fujikura H, Kimura K, Goto T, Hayashi T, Taira H, Shinozaki Y, Umetani K, Hyodo K, Tanioka K, Mochizuki R, Kawai T, Koide S, Mori H (2002) Inhomogeneous vasodilatory responses of rat tail arteries to heat stress: evaluation by synchrotron radiation microangiography. Jpn J Physiol 52:403–408

    Article  Google Scholar 

  40. Kim JW, Seo HS, Hwu Y, Je JH, Kim A, Oh CW, Suh SY, Rha SW, Park CG, Oh DJ (2007) In vivo real-time vessel imaging and ex vivo 3D reconstruction of atherosclerotic plaque in apolipoprotein E-knockout mice using synchrotron radiation microscopy. Int J Cardiol 114:166–171

    Article  Google Scholar 

  41. Hwu Y, Je JH, Margaritondo G (2005) Real-time radiology in the microscale. Nucl Instrum Meth A 551:108–118

    Article  CAS  Google Scholar 

  42. Wang Y, Liu X, Im KS, Lee WK, Wang J, Fezzaa K, Hung DLS, Winkelman JR (2008) Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry. Nat Phys 4:305–309

    Article  CAS  Google Scholar 

  43. Wang CH, Liu CJ, Wang CL, Hua TE, Obliosca JM, Lee KH, Hwu Y, Yang CS, Liu RS, Lin HM, Je JH, Margaritondo G (2008) Optimizing the size and surface properties of polyethylene glycol (PEG)-gold nanoparticles by intense X-ray irradiation. J Phys D 41:195301

    Article  Google Scholar 

  44. Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC, Wang CL, Kempson IM, Hwu Y, Lai TC, Hsiao M, Yang CS, Chen YJ, Margaritondo G (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55:931–945

    Article  CAS  Google Scholar 

  45. Goel R, Shah N, Visaria R, Paciotti GF, Bischof JC (2009) Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system. Nanomedicine 4:401–410

    Article  CAS  Google Scholar 

  46. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30:6065–6075

    Article  CAS  Google Scholar 

  47. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    Article  CAS  Google Scholar 

  48. Song YF, Chang CH, Liu CY, Chang SH, Jeng US, Lai YH, Liu DG, Chung SC, Tsang KL, Yin GC, Lee JF, Sheu HS, Tang MT, Hwang CS, Hwu Y, Liang KS (2007) X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter. J Synchrotron Rad 14:320–325

    Article  CAS  Google Scholar 

  49. Yang YC, Wang CH, Hwu YK, Je JH (2006) Synchrotron X-ray synthesis of colloidal gold particles for drug delivery. Mater Chem Phys 100:72–76

    Article  CAS  Google Scholar 

  50. Wang CH, Hua TE, Chien CC, Yu YL, Yang TY, Liu CJ, Leng WH, Hwu Y, Yang YC, Kim CC, Je JH, Chen CH, Lin HM, Margaritondo G (2007) Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction. Mater Chem Phys 106:323–329

    Article  CAS  Google Scholar 

  51. Wang CH, Liu CJ, Wang CL, Hua TE, Obliosca JM, Lee KH, Hwu Y, Yang CS, Liu RS, Lin HM, Je JH, Margaritondo G (2008) Optimizing the size and surface properties of polyethylene glycol (PEG)–gold nanoparticles by intense X-ray irradiation. J Phys D 41:195301

    Article  Google Scholar 

  52. Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon KH (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42:797–806

    Article  CAS  Google Scholar 

  53. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interfac 123:471–485

    Article  Google Scholar 

  54. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    Article  CAS  Google Scholar 

  55. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  CAS  Google Scholar 

  56. Liu CJ, Wang CH, Chien CC, Yang TY, Chen ST, Leng WH, Lee CF, Lee KH, Hwu Y, Lee YC, Cheng CL, Yang CS, Chen YJ, Je JH, Margaritondo G (2008) Enhanced X-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology 19:295104

    Article  Google Scholar 

  57. Morel AL, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) Sonochemical approach to the synthesis of Fe3O4·SiO2 core shell nanoparticles with tunable properties. ACS Nano 2:847–856

    Article  CAS  Google Scholar 

  58. Ankamwar B, Lai TC, Huang JH, Liu RS, Hsiao M, Chen CH, Hwu YK (2010) Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21:075102

    Article  CAS  Google Scholar 

  59. Huang FK, Chen WC, Lai SF, Liu CJ, Wang CL, Wang CH, Chen HH, Hua TE, Cheng YY, Wu MK, Hwu Y, Yang CS, Margaritondo G (2010) Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol 55:469–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Science and Technology Program for Nanoscience and Nanotechnology, the Thematic Research Project of Academia Sinica, the Biomedical Nano-Imaging Core Facility at National Synchrotron Radiation Research Center (Taiwan), the Blonc Project of ANR-NSC (French National Research Agency and Taiwan National Science Council, the Center for Biomedical Imaging (CIBM) in Lausanne, partially funded by the Leenaards and Jeantet foundations and by the Swiss Fonds National de la Recherche Scientifique and by the EPFL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hwu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, CC., Wang, C.H., Wang, C.L. et al. Synchrotron microangiography studies of angiogenesis in mice with microemulsions and gold nanoparticles. Anal Bioanal Chem 397, 2109–2116 (2010). https://doi.org/10.1007/s00216-010-3775-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3775-8

Keywords

Navigation